Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon

||अंतरी पेटवू ज्ञानज्योत||

SYLLABUS

for

Master of Science (M. Sc.) Physics

(with specialization in Materials Science and Energy Studies)

Choice Based Credit System (Outcome Based Curriculum)

Department of Physics, School of Physical Sciences Kavayitri Bahinabai Chaudhari North Maharashtra University Jalgaon 425 001 (M.S.)

2019 - 2020

Summary of Distribution of Credits under CBCS Scheme for

M.Sc. Physics (MS & ES)

at

School of Physical Sciences

[at University Campus under Academic Flexibility w.e.f. 2019-20]

Sr.No	Type of course	Sem I	Sem II	Sem III	Sem IV
	Core				
01	(03 T + 01 P)	16	16	16	16
02	Skill based	04	04	-	-
	School	-	-		
04	Elective/ Project	-	-	04	04
05	Audit	02	02	02	02
06	Total Credits	22	22	22	22

Subject Type	Core	Skill based	School Elective/ Project	Audit	practical	Total
Credits	48	08	08	08	16	88

(T, Theory; P, Practical)

Total Credits = 88

* Materials Science: MS,

Energy Studies: ES

School of Physical Sciences Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon M. Sc. Physics (w. e. f. A. Y. 2019 -2020)

Course credit scheme

Somostor	(A) Core Courses			(B) Skill Based / Elective Course			(C) A (No weig	Total Credits		
Semester	No. of	Credits	Total	No. of	Credits	Total	No. of	Credits	Total	(A+B+C)
	Courses	(T+P)	Credits	Courses	(T+P)	Credits	Courses	(Pract.)	Credits	$(\mathbf{A} + \mathbf{D} + \mathbf{C})$
Ι	4	12 + 4	16	1	4 + 0	4	1	2	2	22
II	4	12 + 4	16	1	4 + 0	4	1	2	2	22
III	4	12 + 4	16	1	0+4	4	1	2	2	22
IV	4	12+4	16	1	0+4	4	1	2	2	22
Total		64			16			8		88
Credits		04			10			o		00

(T, Theory; P, Practical)

Structure of Curriculum

			First	t Year			Secon	l Year		Total	
		Seme	ester I	Seme	ester II	Semes	ter III	Semes	ster IV	Credit	
		Credit	Course	Credit	Course	Credit	Course	Credit	Course	Value	
			Pr	erequisit	e and Cor	e Courses					
(A)	Theory	12	3	12	3	12	3	12	3	48	
	Practical	4	1	4	1	4	1	4	1	16	
(B)	Skill Based / Subject Elective Courses										
1	Theory /Practical	4	1	4	1	4	1	4	1	16	
(C)	Audit Course (No weighta	ige in CG	PA calcu	lations)							
1	Practicing Cleanliness	2	1							2	
	Personality & and										
2	Cultural Development			2	1					2	
	Related Course										
3	Technology Related +					2	1			2	
5	Value Added Course					2	1			2	
4	Professional and Social +							2	1	2	
+	Value Added Course							2	1	2	
	Total Credit Value	22	6	22	6	22	6	22	6	88	

List of A	udit Courses	s (Select any C	ONE course	of Choice fr	om Semester II;	Semester III	and Semester IV)		
Somo	ston I	Semester II (0	Choose One)	Semester I	II (Choose One)	Semester IV(Choose One)			
Semester I (Compulsory)		Personality an Develor			nnology + dded Course	Professional and Social + Value Added Course			
Course Code	Course Title	Course Code	Course Title	Course Code	Course Title	Course Code	Course Title		
		AC-201 (A)	Soft Skills	AC-301(A)	Computer Skills	AC-401(A)	Human Rights		
A.C. 101	Practicing	AC-201 (B)	Sport Activities	AC-301(B)	Cyber Security	AC-401 (B)	Current Affairs		
AC-101	Cleanliness	AC-201 (C)	Yoga	AC-301(C)	Seminar + Review Writing	AC-401(C)	Seminar + Review Writing		
		AC-201 (D)	Music	AC-301(D)	Biostatistics	AC-401(D)	Intellectual Property Rights (IPR)		

Page **2** of **50**

Semester-wise Course Structure of M.Sc. I Physics (w.e.f. A Y 2019-2020)

Semester I

Course	Commentaria	Course Title	Teac	Ma	rks (T	.00)	Credits			
Course	Course Type	Course The	т	Р	Total	Inte	ernal	External		Creans
				Г	Total	Т	Р	Т	Р	
MS/ES- 101	Core	Mathematical Methods For Physics	4		4	40		60		4
MS/ES- 102	Core	Classical Mechanics	4		4	40		60		4
MS/ES- 103	skill based	Electronics	4		4	40		60		4
MS/ES- 104	Core	Quantum Mechanics – I	4		4	40		60		4
MS/ES- 105	Practical	General Laboratory – I		4	4		40		60	4
AC-101	Audit Course	Practicing Cleanliness		2	2		100			2
Total Cro	Total Credit for Semester I: 22 (T = Theory: 12; P = Practical: 4; Skill Based: 4; Audit Course:2)									

Semester II

Course	Course Ture	Comment Tida	Teaching Hours/ Week			Marks (Total 100)				- Credits
Course	Course Type	Course Title	Т	Р	Total	Internal		External		Creans
						Т	Р	Т	Р	
MS/ES- 201	Core	Quantum Mechanics – II	4		4	40		60		4
MS/ES- 202	Skill Based	Experimental Techniques and Data Analysis	4		4	40		60		4
MS/ES- 203	Core	Statistical Mechanics	4		4	40		60	-	4
MS/ES- 204	Core	Electrodynamics	4		4	40		60		4
MS/ES- 205	Practical	General Laboratory – II		4	4		40		60	4
AC- 201/2/3/4	Audit Course	Choose one out of Four (AC-201/ AC-202/AC-203/AC-204) from Personality and Cultural Development		2	2		100			2
Total Cre	Total Credit for Semester II: 22 (T = Theory: 12; P = Practical:4; Skill Based:4; Audit course:2)									

Course	Course	Course Title	Teac	Marks (Total 100)				Credita		
Course	Туре		Т	Р	Total	Internal		Exte	ernal	Credits
			1	r		Т	Р	Т	Р	
MS/ES- 301	Core	Atomic and Molecular Physics	4		4	40		60		4
MS/ES- 302	Core	Solid State Physics	4		4	40		60		4
MS/ES- 303	Core	MS: Elements of Materials Science ES: Renewable Energy	4		4	40		60		4
MS/ES- 304	Core/ Practical	Special Laboratory - I		4	4		40		60	4
MS/ES- 305	Elective	Project		4	4		40		60	4
AC- 301/2/3/4	Audit Course	Choose one out of Four (AC-301/ AC- 302/AC-303/AC-304) from Technology + Value Added Courses		2	2		100			2

Total Credit for Semester III: 22 (T = Theory: 12; P = Practical:4; Project/Elective:4; Audit Course:2)

AC-301Audit Course: C-Programming (Technology + value added course)List of elective courses to be offered in Semester-III:MS-305(A): Project in Materials ScienceMS-305(B): Project in Energy Studies

Semester IV

	Semester										
Course	Course			Teaching Hours/ Week			Marks (Total 100)				
Course	Туре	Course Title	т	р	T. (1	Int	ernal	External			
	• •		Т	Р	Total	Т	Р	Т	Р		
MS/ES- 401	Core	Nuclear Physics	4		4	40		60		4	
MS/ES- 402	Core	MS: Materials Synthesis Methods ES: Solar Photovoltaic Grid Connected Systems	4		4	40		60		4	
MS/ES- 403	Core	MS: Characterization of Materials ES: Energy Conversion and Management	4		4	40		60	1	4	
MS/ES- 404	Core/ Practical	Special Laboratory - II		4	4		40		60	4	
MS/ES- 405	Elective	Project		4	4		40		60	4	
AC- 401/2/3/4	Audit Course	Choose one out of Four (AC-401/ AC- 402/AC-403/AC-404) from Professional and Social + Value Added Courses		2	2		100			2	

Total Credit for Semester IV: 22 (T = Theory: 12; P = Practical:4; Project/Elective:4; Audit Course:2)

AC-401 Audit Course: Review of Research Papers (Professional and Social + value added course)

List of elective courses to be offered in Semester-IV:

MS-405(A): Project in Materials Science MS-405(B): Project in Energy Studies

Program at a Glance

Name of the program (Degree)	: M. Sc. (Physics)
Faculty	: Science and Technology
Duration of the Program	: Two years (four semesters)
Medium of Instruction and Examination	: English
Exam Pattern	: 60 : 40 (60 marks University exam and 40 marks continuous internal departmental exam/assessment)
Passing standards (separate head of passing)	:40% in each exam separately
Evaluation mode	: CGPA
Total Credits of the program	: 88 (64 core credits including 16 credit for practical's, 08 credits for skill based, 08 credits for Elective/Project, 08 credits for audit)

Program Objectives for M.Sc. Program:

- 1. To impart the profound theoretical and practical knowledge of the specific science discipline along with the fundamental core concepts
- 2. To train the students to employ modern techniques, tools, methodologies, equipment, hardware/software etc. to perform objective oriented scientific and planned experiments
- 3. To groom the students for all-round development and mould them in a trained workforce to provide teachinglearning, research, business, professional supports in the various science disciplines
- 4. To make the student to develop the ability to think analytically, independently and draw logical conclusions to solve real-life problems.
- 5. To utilize the skills and knowledge gained through the subject to deal with real life situations and problems related to society, environment, research and development etc.

Program Outcomes (PO) for M.Sc. Program:

Upon successful completion of the M.Sc. program, student will be able to:

PO No.	РО	Cognitive level
PO1	understand the basic concepts, fundamental principles, and the scientific theories related to various scientific phenomena and their relevancies in the day-to-day life.	2
PO2	administer the skills in handling scientific instruments, planning and performing in laboratory experiments	3
PO3	analyse the given scientific experimental data critically and systematically and the ability to draw the objective conclusions.	4
PO4	develop various skills such as communication, managerial, leadership, entrepreneurship, teamwork, social, research etc., which will help in expressing ideas and views clearly and effectively	3
PO5	model and formulate the real problems and find solution based-on knowledge acquired	6
PO6	to evaluate how developments in any science subject helps in the development of other science subjects and vice-versa and how interdisciplinary approach helps in providing better solutions and new ideas for the sustainable developments.	5

Program Specific Objectives (PSOs):

- The said programme aims for the studies related to basic issues in Physics and Materials Science.
- The said programme also imparts training for synthesis of novel materials and their characterization for the various S &T applications.
- The students are also explored for the advances in the said area through training on advance equipments.
- The said programme aims for the studies related to basic issues in Physics and Energy Sciences.
- The said programme also imparts training in renewable energy issues.
- The students are also explored for the advances in the disciplines like Grid connected/ Off-Grid solar systems.

Program Specific Outcomes for M. Sc. Physics program

After completion of the M. Sc. Physics program, the students should be able to:

PO No.	PSO	Cognitive Level
PSO1	Apply gained knowledge and adapted skills to solve the real time problems in concern field.	03
PSO2	Focus on various future challenges associated to career in research laboratories/ Ph.D. Program/ Teaching/ International studies based on gained knowledge.	04
PSO3	Develop a thorough understanding of the fundamental principles, concepts, and processes of various academic fields of Physics and its subclasses.	06

Distribution of Course papers for M. Sc. Part I Physics

Subject Code	Title of the Paper		Duration (Hrs./Wk)	Max. Mark	Exam. Time (Hrs.)
	M.Sc. Part I (Physics wi	th MS and ES)			
	Semester I : Theorem	ry Courses			
MS/ES-101	Mathematical Methods For Physics	Core course	04	100	03
MS/ES-102	Classical Mechanics	Core course	04	100	03
MS/ES-103	Electronics	Core course	04	100	03
MS/ES- 104	Quantum Mechanics – I	Core course	04	100	03
	Semester I : Practic	cal Courses			
MS/ES-105	General Laboratory – I	Core course	04+04	100	06
AC-101	Practicing Cleanliness	Audit course	02	100	
	Semester II : Theo	ry Courses			
MS/ES-201	Quantum Mechanics – II	Core course	04	100	03
MS/ES- 202	Experimental Techniques and Data Analysis	Core course	04	100	03
MS/ES- 203	Statistical Mechanics	Core course	04	100	03
MS/ES- 204	Electrodynamics	Core course	04	100	03
	Semester II : Practi	cal Courses			
MS/ES-205	General Laboratory – II	Core course	04+04	100	06
AC-	Choose one out of Four (AC-201A/ AC-201B/	Audit course	02	100	
201A/B/C/D	AC-201C/ AC-201D) from Personality and				
	Cultural Development (Audit Course)				

M.Sc. Part I Semester I Physics (Material Science and Energy studies): Core Courses

	MS/ES - 101: Mathematical Methods For Physics		
	Course Objectives:		
	1. This course has been developed to introduce students to some topics of		
	Mathematical Methods for Physics which are directly relevant in different papers		
	of M.Sc. Physics.		
	 2. It includes functions of a Complex variable, Matrices, Special functions, Fourier 		
TT •4 1	series, Integral Transforms.	10 1	
Unit 1	Vector spaces and Matrices	10 L	
	Definition of a linear vector space, Linear independence, basis and dimension, scalar Product, inner product, Orthonormal basis, Schwartz Inequality, Matrices, Orthogonal,		
	Unitary, Eigen values and Eigen vectors of matrices, Matrix diagonalization, trace and		
	normalization of matrix, Cayley-Hamilton theorem.		
Unit 2	Special Functions	08 L	
Unit 2	Definition of special functions, Generating functions for Bessel function of integral	00 L	
	order $Jn(x)$, Legendre polynomials $Pn(x)$, Generating functions for $Pn(x)$, Hermite		
	Polynomials, Generating functions for Hermit polynomials.		
Unit 3	Fourier series	10 L	
Onit 5	periodic function, Euler Fourier formula, Dirichilete conditions, half range Fourier	IUL	
	series, Change of interval, Parseval's identity, Application of Fourier series- Vibrating		
	string, RLC circuit and Square Wave.		
Unit 4	Integral transforms	14 L	
	Integral transform, Laplace transform, Properties of Laplace transforms, Inverse		
	Laplace Transform, Laplace transform of derivatives and integrals, Laplace's equation		
	– application to electrostatic field		
	Fourier Transforms: Fourier sine and cosine Transforms, odd and even functions,		
	convolution theorem, Parseval's theorem		
Unit 5	Elements of complex analysis	10 L	
	Introduction, Analytic functions, Cauchy-Riemann conditions, Harmonic functions,		
	Cauchy's integral formula, residue theorem, Residues at different poles, Contour		
	Integrals, Taylor and Laurent series, singularities, Definite integrals.		
Unit 6	Elementary Probability Theory	08 L	
	A definition of the probability sample space, fundamental probability theorems,		
	random variables, and probability distributions, special probability distribution,		
	binomial, Poisson, normal		
	ed readings:		
	nematical Methods for Physicists: Tai L. Chow, 1st Edition, 2000, Cambridge University I		
2. Math	nematical Methods For Physics And Engineers: Riley, Hobson And Bence, 1st Edition,	, 1997,	
Cam	bridge University Presses.		
3. Math	Athematical Methods in Physical Sciences: H. K. Das, S Chand Publications.		
	Matrices and Tensors in Physics: A.W. Joshi 3rd Edition, New Age International (P) Ltd.		
	Inthematical Methods for Physicists: G.B Arfken, H. J.Weber, 5th Edition, Harcourt Pvt. Ltd.		
	(Academic Press).		
(ACa			

CO No.	СО	Cognitive level
C101.1	Solve special functions and matrices for solving Quantum Mechanical Problems	3
C101.2	express matrices for solving linear algebraic equations and to use group theory	6
	for understanding of crystallography.	
C101.3	Analyze Fourier series and integral transforms for analysis of wave mechanics	4
	and electrical circuit analysis.	

	MS/ES - 102: Classical Mechanics		
	Course Objectives:		
	1. To develop familiarity with the physical concepts and the mathematical		
	methods of classical mechanics.		
TT 1 1	2. To develop skills in formulating and solving physics problems.	1.0 7	
Unit 1	Energy and Work	12 L	
	Conservative force, potential energy, conservative momentum and angular momentum,		
	conservative system of particles of mass, motion of COM, conservation theorems &		
TI 0	equation of motion under different types of forces.	10.1	
Unit 2	The Langrangian Formulation of Mechanics	12 L	
	Generalized coordinates, DoF, configurational space, constraints, D'Alembert's		
	principle and Lagrange's equations, kinetic energy in generalized coordinates,		
TI */ 0	generalized momentum and energy, Gauge invariance, cyclic or ignorable coordinates.	101	
Unit 3	Hamiltonian Dynamics	12L	
	Hamilton's principle and Lagrange's equations, Lagrange's equation for non-		
	holonomic systems, few examples of Lagrange's equation of motion, method of		
	undetermined multipliers, the Hamiltonian of the dynamical system, Hamilton's		
	canonical equations, canonical transformations, Poisson's bracket, phase space,		
TT 1 1	Lagrange from Hamiltonian, few application of Hamiltonian formulation.	101	
Unit 4	Central Force Motion	12L	
	The two body problem and the reduced mass, general properties of central force		
	motion, effective potential and classification of orbits, general solutions, inverse square		
TI 4 7	law of the force, Kepler's law of planetary motion.	10 1	
Unit 5	Coupled Oscillations	12 L	
	Coupled pendulum, normal coordinates, coupled oscillators and normal oscillators, and		
	normal modes, equation of motion of a coupled system, normal modes of oscillation, orthogonality of Eigenvectors, normal coordinates.		
C			
	ed readings:		
	sical Mechanics: T.L.Chow 1st Edition, 1995, John Willey and Sons Inc.		
	sical Mechanics: Takwale, Puranic 1st Edition, 2007, Tata McGraw Hill Publication		
	sical Mechanics: H.Goldstein 2nd, Edition, 1980, Narosa Publishing House		
	Classical Mechanics: Rana and Joag, 1st Edition, Tata McGraw Hill Company Ltd.		
	5. Classical Mechanics: A Modern Perspective- Barger and Olsson 2nd Edition, 1995, McGraw Hill Publication.		
Publ	ication.		

On completion of this course, the student will be able to:

CO No.	СО	Cognitive level
C102.1	Interpret the physical principles behind the derivation of Lagrange and	2
	Hamilton's equations, and the advantages of these formulations,	
C102.2	Evaluate different problem-solving strategies within mechanical physics and	4
	assess which of these strategies is most useful for a given problem,	
C102.3	Estimate the fundamental principles of central force motion	5
C102.4	Explain the intricacies of coupled oscillations.	3

M.Sc. Part I Semester I Physics: Skill Based Course

	MS/ES - 103: Electronics (Skill base)	
	Course Objectives:	
	➤ 1. To understand structure and characteristics of analog and digital electronic	l
	devices.	l
	2. To understand the working of these devices in different applications.	
Unit 1	Semiconductor devices	12 L
	Diodes, transistors, Field Effect Devices, homo and hetero-junction devices: device	l
	structure, device characteristics, frequency dependence and applications.	l
	Opto-electronic devices: solar cells, photo-detectors, LEDs	ļ
Unit 2	Bi-Junction Transistor Amplifiers	14 L
	Transistor DC biasing circuits: DC load line, Q-point, base bias, voltage divider bias,	l
	Emitter bias, collector feedback bias, Emitter feedback bias: circuit analysis	l
	Amplifier AC equivalent circuits: ac analysis of transistors, small signal analysis, H	l
	parameters	L
Unit 3	Amplifiers and Oscillators	12 L
	Feedback: Positive and negative feedback and their effects, Oscillators: Introduction,	l
	Barkhausen criteria, Wien bridge, phase shift, Colpitt and Hartley. Amplifier	l
	properties: gain, input and output impedance, Class A, B and C amplifiers, power	l
	amplifiers	L
Unit 4	OPAMP circuits	10 L
	Linear Op Amp Circuits, Non Linear Op Amp Circuits, applications: integrator,	l
	differentiator, comparator, Schmidt trigger, active filters	ļ
Unit 5	Digital Electronics	12 L
	Digital Electronics-Logic gates, Arithmetic circuits, Flip Flops, NAND & NOR gates	l
	as building blocks, X-OR Gate, simple combinational circuits, K-Map, Flip-flop, shift	l
	register, counters, Basic principles of A/D & D/A converters ; Simple applications of	l
	A/D & D/A converters.	l
G		
00	ted readings:	*****
	Semiconductor Physics and Devices- Donald A. Neaman3rd Edition, 2007, Tata McGra	w Hill
	Company.	
2.	Electronic Principles- A. Malvino, D.J. Bates7th Edition, 2008, Tata McGraw-Hill Publ	ication
	Pvt Ltd.	
3.	Introductory Electronic Devices And Circuits- Painter2nd Edition, 1991, New	Jerky:
	Regents/Prentice Hall	· ·-,
	Electronic Devices And Circuits-Michael Hassul, Don Zimmerman Prentice Hall	
5.	Operational Amplifiers – G.B.Clayton (5th edition) Newnes	

- 6. Operational Amplifiers Applications G.B.Clayton
- 7. Digital Principles and Applications : Malvino and Leach

On completion of this course, the student will be able to:

CO No.	СО	Cognitive level
C103.1	Interpret structure and theory behind working of few important analog and digital electronics devices.	2
C103.2	Analyze the circuits based on these devices.	4
C103.3	Memorize how these devices are utilized in different applications.	1

	MS/ES - 104: Quantum Mechanics - I	
	Course Objectives:	
	1. To gain knowledge about the time-dependent and time-independent	
	Schrödinger equation for simple potentials like for instance the harmonic	
	oscillator and hydrogen like atoms.	
	> 2. To apply principles of quantum mechanics to calculate observables on known	
TT •4 1	wave functions.	10 T
Unit 1	The Origin of Quantum Theory	12 L
	Inadequacy of classical Physics, de Broglie hypothesis, wave-particle duality, Born's	
	interpretation of wave function, wave function for particle momentum, wave packets,	
TT	the Heisenberg's uncertainty principle.	10 1
Unit 2	Schrodinger Equation	10 L
	Necessity of wave equation and the conditions imposed on it, time dependent	
	Schrodinger equation, Conservation of probability, Expectation values, Ehrenfest	
	theorem, time independent Schrodinger equation, Eigen functions and Eigen values,	
	Stationary states, orthogonality of eigen functions, parity, continuity and boundary	
	conditions.	10 1
Unit 3	One Dimensional Energy Eigen value problems	12 L
	Free particle, infinite square well, potential step, square potential barrier, explanation	
T T 1 , 4	of alpha decay, square well potential, Linear harmonic oscillator.	
Unit 4	Formalism of Quantum Mechanics	14 L
	Postulates of quantum mechanics, representation of states and dynamical variables,	
	observables, self-adjoint operators, eigen functions and eigen values, degeneracy,	
	orthogonality, orthonormality, completeness and closure property, physical	
	interpretation of eigen values, eigen functions and expansion coefficients, eigen values	
	and eigen functions of momentum operator, Dirac's bra and ket notations, linear	
	operators, unit operator, hermitian operator, unity operator, parity operator, eigen	
T T 1 / 2	values and eigen functions of simple harmonic oscillators by operator method.	10.1
Unit 5	Angular Momentum	12 L
	Orbital angular momentum, angular momentum algebra, angular momentum as a	
	generator of infinitesimal rotations, Eigen values and functions of L2 and Lz, ladder	
	operators L- and L+, spin angular momentum, Pauli's spin matrices, addition of	
	angular momenta, representation of J in ljm> basis, computation of Clebsch-Gordan	
~	coefficients in simple cases $(J1=1/2, J2=1/2)$.	
00	ted readings:	
	tum Mechanics: B. H. Bransden and C. J. Joachain, 2nd Edition, 2004, Pearson Education	n ltd.
2 Outont	um Machaniage I. I. Schiff 2rd adition 1008 MCH book company	

2. Quantum Mechanics: L. I. Schiff, 3rd edition, 1998, MGH book company.

3. Quantum Mechanics: J. D. Powell and B. Crossman. 1st edition, 1998, Narosa Publishing House. 4. Quantum Mechanics: S. Gasiorowicz, 3rd edition, 2003, Wiley International.

Course Outcomes (COts):

On completion of this course, the student will be able to:

CO No.	СО	Cognitive level
C104.1	Explain the differences between classical and quantum mechanics	2
C104.2	express the idea of wave function	2
C104.3	formulate the uncertainty relations	6
C104.4	Solve Schrödinger equation for simple potentials	3

MS/ES-105: General Laboratory - I

MS	ES – 105 General Laboratory - I
Course Objectives:	
➤ Acquire the application	propriate data accurately and keep systematic record of
laboratory activ	ities.
Interpret finding	gs using the correct physical scientific framework and tools.
	ional quality textual and graphical presentations of laboratory
data and compu	itational results.
-	ible causes of discrepancy in practical experimental
	sults in comparison to theory.
Common Expe	
	opriate data accurately and keep systematic record of laboratory
activities.	
2. Interpret finding	s using the correct physical scientific framework and tools.
3. Prepare professio	onal quality textual and graphical presentations of laboratory data
and computation	
	e causes of discrepancy in practical experimental observations,
results in compa	
	A _I , R _o & R _i of CE RC-Coupled amplifier with potential divider
biasing.	·
6. Study of Electron	
 Study of Active Study of Active 	
	ideality factor, reverse saturation current and diode capacitance.
	f skin-depth in metals.
	f Energy band gap using diode heating.
	bot of differential equation by Newton Rapson Method.
	bot of differential equation by Bisection Method.
	pot of differential equation by Regula-falsi Method.
	ion of integration of given function by Trapezoidal Method.
	ion of integration of given function by Simpson's 1/3 method.
	ical's has to be performed by MS and ES students.)
Suggested readings:	
1. Semiconductor Physics at	nd Devices- Donald A. Neaman3rd Edition, 2007, Tata McGraw Hill

Company.

- 2. Electronic Principles- A. Malvino, D.J. Bates7th Edition, 2008, Tata McGraw-Hill Publication Pvt Ltd.
- 3. Introductory Electronic Devices And Circuits- Painter2nd Edition, 1991, New Jerky; Regents/Prentice Hall
- 4. Electronic Devices And Circuits-Michael Hassul, Don Zimmerman Prentice Hall
- 5. Operational Amplifiers G.B.Clayton (5th edition) Newnes
- 6. Operational Amplifiers Applications G.B.Clayton
- 7. Digital Principles and Applications : Malvino and Leach.
- 8. Introductory Methods Of Numerical Analysis S.S.Sastri 2nd Edition, 1992, Prentice Hall Of India Pvt. Ltd.

Course Outcomes (COts):

On completion of this course, the student will be able to:

CO No.	СО	Cognitive level
C105.1	Express various experimental and computational tools thereby developing	2
	analytical abilities to address real world problems.	
C105.2	Adapt the skills related to research, education, and industry academia.	6
C105.3	Solve the various issues concerned to the laboratory work.	3

M.Sc. Part I Semester I Physics: Audit Courses

AC-101: Practicing Cleanliness

(Compulsory; Campus-level Audit Course; Practical; 2 Credits)

Course Objectives (CObs):

• To make students aware of Clean India Mission and inculcate cleanliness practices among them.

- Awareness program on
 - Swachh Bharat Abhiyan (Clean India Mission)
 - Clean Campus Mission
 - Role of youth in Clean India Mission
- Cleaning activities inside and surroundings of Department buildings.
- Tree plantation and further care of planted trees
- Waste (Liquid/Solid/e-waste) Management, Japanese 5-S practices
- Planning and execution of collection of Garbage from different sections of University campus
- Role of youth in power saving, pollution control, control of global warming, preservation of ground water and many more issues of national importance.
- Cleanest School/Department and Cleanest Hostel contests
- Painting and Essay writing competitions

On completion of this course, the student will be able to:

CO No.	СО	Cognitive level
AC101.1	Identify need at of cleanliness at home/office and other public places.	2
AC101.2	Plan and observe cleanliness programs at home and other places.	4
AC101.3	Practice Japanese 5-S practices in regular life.	3

M.Sc. Part I Semester II Physics: Core Courses

	MS/ES - 201: Quantum Mechanics - II	
	 Course Objectives: ▶ 1. This course is designed for students to gain knowledge about the approximate methods for solving the Schrödinger equation. 2. To solve the problems associated with the variational method, perturbation theory, WKB method. 	
Unit 1	Central Potential Separation of the Schrodinger equation in spherical polar co-ordinates, the hydrogen atom, energy levels, the Eigenfunction of the bound states.	12 L
Unit 2	Time independent Perturbation theory Time independent perturbation theory: Non-degenerate and degenerate cases (upto 2 nd order). Applications: anharmonic oscillator, Zeeman effect, Stark effect.	12 L
Unit 3	Time dependent Perturbation theory Time dependent perturbation theory: First order perturbation, harmonic perturbation, transition to continuum states, absorption and emission of radiation, Einstein's coefficients, Fermi's golden rule.	14 L
Unit 4	Variational Method Variational method: Basic principles and applications to particle in box, simple harmonic oscillator, hydrogen atom.	10 L
Unit 5	WKB Approximation WKB approximation: Qualitative development and condition for validity of this approximation, Bohr's quantization condition, applications to tunnelling such as α -particle field emission.	12 L
1. ltd 2. 3.	 ted readings: Quantum Mechanics: B. H. Bransden and C. J. Joachain, 2nd Edition, 2004, Pearson Edu Quantum Mechanics: L. I. Schiff, 3rd edition, 1998, MGH book company. Quantum Mechanics: J. D. Powell and B. Crossman. 1st edition, 1998, Narosa Pub. House Quantum Mechanics: S. Gasiorowicz, 3rd edition, 2003, Wiley International. 	

On completion of this course, the student will be able to:

CO No.	СО	Cognitive level
C201.1	Apply the variational method for various numerical	3
C201.2	Anticipate principles of time-independent perturbation theory, time-dependent perturbation theory express the idea of wave function	6
C201.3	Evaluate problems associated to WKB method	5

M.Sc. Part I Semester II Physics: Skill Based Course

	MS/ES - 202: Experimental Techniques and Data Analysis	
	Course Objectives:	
	➤ 1. Objective of this course is to learn experimental techniques and data analysis	
	during any type of experiment.	
	2. To learn related theory and study the practices necessary for solving the	
	problems in data analysis.	10 -
Unit 1	Measurement, Interpretation and analysis	10 L
	Basic definitions, Accuracy and precision, significant figures, types of errors: gross	
	errors, systematic errors, random errors, statistical analysis: arithmetic mean, deviation	
	from the mean, average deviation, standard deviation, probability of errors: Normal	
	distribution of errors, probable errors, propagation of errors	
Unit 2	Curve fitting, Cubic Splines and Approximations	15 L
	Introduction, least square fitting procedures: Fitting a straight line, Non-linear curve	
	fitting, Curve fitting by a sum of exponentials; Data fitting with cubic splines:	
	derivation of the governing equations, end conditions, minimizing property of cubic	
	splines; Approximation of functions: Chebyshev polynomials, Economizing of power	
TI 4 2	series, chi-square test	15 T
Unit 3	Transducers	15 L
	Classification of transducers, selecting a transducer. Working principle and characteristics of the main transducers for measurement of:	
Unit 4	Temperature, pressure, Production and measurement of low pressure (vacuum) Signal Conditioning: Processes	10 L
Unit 4	Input/output impedance, Impedance matching, Amplification: the Differential	10 L
	amplifier, Instrumentation amplifiers, Modulation techniques: Amplitude modulation,	
	Frequency modulation, phase modulation	
Unit 5	Signal Conditioning: Recovery and Conversion	10 L
Omt 5	Demodulation, Filters, Noise reduction, Lock-in-amplifiers, phase locked loop, Box	10 L
	car integrators, Fourier transforms, sample and hold unit, ADC: quantization,	
	resolution, sampling frequency	
Sugges	ted readings:	I
00	Modern Electronic And Measurement Techniques-A.D.Helfrick,W.D.Kooper 1st	
	Edition,2004, Prentice Hall Of India Pvt. Ltd.	
2		Crow
۷.	Instrumentation: Devices And Systems- Rangan, Mani, Sharma, 1st Edition, 1990, Tata M	cGraw
	Hill Publication Pvt. Ltd.	
3.	Introductory Methods Of Numerical Analysis S.S.Sastri 2nd Edition, 1992, Prentice 1	Hall Of
	India Pvt. Ltd.	
4.	Introduction To Instrumentation And Control- A.K.Ghosh, 1st Edition, 2000, Prentice H	Iall Of
	India Pvt. Ltd.	

CO No.	СО	Cognitive level
C202.1	Describe the error free measurements, interpretation and data analysis	3
C202.2	Explain the conversion of physical quantity into electrical forms and physics behind its conversion	2
C202.3	Judge the signal conditioning and its recovery processes	3

	MS/ES - 203: STATISTICAL MECHANICS	
	 <i>Course Objectives</i>: 1. The objective of the course is to enable students to get familiar and experience 	
	with various aspects and novelty of statistical mechanics.2. To develop the understanding of basic statistical phenomenon.	
Unit 1	Laws of Thermodynamics Necessity of Statistical Mechanics The laws of thermodynamics and their consequences, phasespace,Statistical description of system of particles: state of a system, microstates, ensembles,basic postulates	12 L
Unit 2	Statistical Description of System of Particles and Statistical Thermodynamics Behaviour of density of states, density of states for ideal gas in classical limit, thermal and mechanical interactions, quasi-static process Statistical thermodynamics: Irreversibility and attainment of equilibrium, Reversible and irreversible processes, thermal interaction betweenmacroscopic systems, approach to thermal equilibrium, dependence of DoS on external parameters, Statistical calculation of thermodynamic variables.	12 L
Unit 3	Classical Statistical Mechanics Microcanonical ensemble and their equivalence, canonical and grand canonical ensembles, partition function, thermodynamic variables in terms of partition and grand partition functions, ideal gas, Gibbs paradox, validity of classical approximation, equipartition theorem, MB gas velocity and speed distribution, Chemical potential, Free energy and connection with thermodynamic variables	12L
Unit 4	Formulation of Quantum Statistics Formulation of quantum statistics, ensembles in quantum statistical mechanics, The theory of simple gases: Maxwell Boltzmann, Bose-Einstein, Fermi-Dirac gases, Statistics of occupation numbers, Evaluation of partition functions, Ideal gases in the classical limit	12L
Unit 5	Ideal Bose and Fermi Systems Ideal Bose system: Thermodynamic behaviour of an ideal Bose gas, Bose-Einstein condensation Thermodynamics of Black-bodyradiation, Stefan-Boltzmann law, Wien's displacement law, Specific heat of solids (Einstein and Debye models) Ideal Fermi systems: Thermodynamic behavior of an ideal Fermi gas, degenerate Fermi gas, Fermi Energy and mean energy, Fermi Temperature, Fermi velocity of a particle of a degenerate gas	12 L
1.1	ted readings: Fundamentals Of Statistical And Thermal Physics-F.Reif 1st Edition, 1965, McGraw Hill Publication Pvt. Ltd	
	Statistical Mechanics- K. Huang 1st Edition, 1991, Wiley Eastern Ltd. Statistical Mechanics-R.K. Patharia 2nd Edition, Elsevier	

- 4. Statistical Physics F.Reif. Berkeley Physics Course (Vol.5), Tata McGraw Hill Pvt. Ltd.
- 5. Fundamentals Of Statistical Mecanics-B.B.Laud Edition, 2007, New Age International

Publishers.

Course Outcomes (COts):

CO No.	СО	Cognitive level
C203.1	Describe various aspects of statistical mechanics	1
C203.2	Interpret thermodynamics of various systems	3
C203.3	Distinguish different laws of thermodynamics	2

	MS/ES - 204: Electrodynamics	
	 Course Objectives: ▶ 1. To understand the basics of electrostatics, magneto statics, electrodynamics and the potential formulation of basic laws. ▶ 2. To understand how to apply basic theories in electromagnetic waves and radiation. 	
Unit 1	Electrostatics and Magnetostatics The electric field, continuous charge distribution, divergence and curl of electrostatic fields, Gauss's law and applications, electric potentials, Poison's equations and Laplace equation, the potential of localized charge distribution, electrostatic boundary condition, work and energy in electrostatics. Biot-Savart's laws, divergence and curls of B, Amperes law and its applications, magnetic vectors potential: the vector potential, magnetostatic boundary conditions, multipole expansion of the vector potential.	10 L
Unit 2	Special Techniques Laplace equation in one, two and three dimensions, boundary conditions and uniqueness theorems, The method of images, the classic image problem, other image problems, spherical co-ordinates, multipole expansion, approximate potentials at large distances, the monopole and dipole terms, origin of coordinates in multipole expansions	10 L
Unit 3	Electrodynamics Electromotive force, electromagnetic induction: Faraday's law, The induced electric field, Inductance, energy in magnetic fields, Maxwell's equation's: Electrodynamics before Maxwell, How Maxwell fixed Amperes law?, Maxwell's equations, magnetic charge, Maxwell's equations in matter, boundary conditions, conservation laws, the continuity equation and Pointing's theorem	10 L
Unit 4	Electromagnetic waves Boundary conditions, reflection and transmission, polarization, electromagnetic waves in vacuum, wave equations for E and B, monochromatic plane waves, energy and momentum in electromagnetic waves, electromagnetic waves in matter, propagation in linear media, R and T at normal incidence, absorption and dispersion, electromagnetic waves in conductors, reflection at conducting surface, guided waves, wave guides, TE waves in rectangular waveguides, the co-axial transmission line.	12 L
Unit 5	Potential Fields	10 L

	The potential formulation, scalar and vector potentials, gauge transformations, Coulomb and Lorentz's gauge, Continuous distributions: retarded potentials, Jefimenko's equations, Point charges: Lienard-Wiechert potential, field of moving	
TT III	point charge.	00 T
Unit 6		08 L
	Dipole radiation, electric dipole radiation and magnetic dipole radiations: E and B	
	radiated, Energy flux and power radiated, Radiation from an arbitrary source, power	
	radiated by a point charge	
Sugge	sted readings:	
1.	Introduction to Electrodynamics- D.J. Griffith3 rd Edition, 2000, Prentice Hall Of India.	
2.	Electromagnetic Field Theory Fundamentals- Guru AndHiziroglu2ndEdition, 1998, Cam	bridge
	University Press.	
3.	Introduction To Electromagnetic Fields-Paul And Nasar.2nd Edition, 1987, McGrav	w Hill
	Company Pvt. Ltd.	
4.	Classical Electrodynamics- J.D.Jackson3rd Edition,2007,Wiley India Pvt Ltd	
5.	Electricity And Magnetism- Edward Purcell(For Basic Readings)2 nd Edition, Tata	
	McGraw Hill Publication Pvt. Ltd	
C		L 11 O.C

 Fundamentals Of Applied Electromagnetics- FawwazUlaby1st Edition, 2002, Prentice Hall Of India Pvt. Ltd.

Course Outcomes (COts):

CO No.	СО	Cognitive level
C204.1	Interpret the basic theories governing the electricity and magnetism	2
C204.2	Apply the basic theories in electromagnetic waves and radiation	3
C204.3	Recognized to apply the basic theories to real problems	1

	MS/ES - 205: General Laboratory - II	
Cours	e Objectives:	
	1. To gain practical knowledge by applying the experimental methods to correlate with the physics theory.	
	2. To learn the usage of electrical and electronic systems for various measurements.	
4	Apply the analytical techniques and graphical analysis to the experimental data.	
4	To develop intellectual communication skills and discuss the basic principles of scientific concepts in a group.	
1.	To determine the characteristic of G-M tube.	
2.	Determination of Planck's constant using LED.	
3.	To plot the frequency response of RC-Coupled Amplifier.	
4.	Measurement of Temperature dependent resistivity using Four Probe Method.	
5.	To study the out wave form by suing Oscillator/Multivibrators.	
6.	Straight Linear Fitting using C programming.	

- 7. Non-liner (Power and exponential) fitting using C programming.
- 8. Calculation of Standard deviation by C programming using given data.
- 9. Solution of differential equation using first Order Euler's Method.
- 10. Solution of differential equation using Ffurth order Runge Kutta method (*Only ten practical's has to be performed by MS and ES students.)

Suggested readings:

- 1. Introductory Electronic Devices And Circuits- Painter2nd Edition, 1991, New Jerky; Regents/Prentice Hall
- 2. Electronic Devices And Circuits-Michael Hassul, Don Zimmerman Prentice Hall
- 3. Operational Amplifiers G.B.Clayton (5th edition) Newnes
- 4. Operational Amplifiers Applications G.B.Clayton
- 5. Digital Principles and Applications : Malvino and Leach.
- 6. Introductory Methods Of Numerical Analysis S.S.Sastri 2nd Edition, 1992, Prentice Hall Of India Pvt. Ltd.

Course Outcomes (COts):

On completion of this course, the student will be able to:

CO No.	СО	Cognitive level
C205.1	Interpret the behavior of electronic components and perform analysis and design	2
	of bias circuits for diodes, transistors etc	
C205.2	Set up testing strategies and select proper instruments to evaluate performance characteristics of electronic circuit.	4
C205.3	Choosing testing and experimental procedures on different types of electronic circuit and analyze their operation different operating conditions.	4

M.Sc. Part I Semester II (Physics): Audit Courses

	AC-201(A): Soft Skills (Personality and Cultural Development Related Audit course; Practical; 2 Credits)	
	(Optional: Campus-level)	
	Course Objectives (CObs):	
	To inculcate different soft skills among students.	
Unit 1	Introduction to soft skills	2 hrs.
	Formal definition, Elements of soft skills, Soft vs. Hard skills, Emotional quotient, Goal	
	setting, life skills, Need for soft skills, Communication skills, Etiquettes& Mannerism.	
Unit 2	Self-Assessment	4 hrs.
	Goal setting, SWOT analysis, attitude, moral values, self-confidence, etiquettes, non-	
	verbal skills, achievements, positive attitude, positive thinking and self-esteem.	
	Activity: The teacher should prepare a questionnaire which evaluate students in all the	
	above areas and make them aware about these aspects.	
Unit 3	Communication Skills	8 hrs.
	Types of communication: Verbal, Non-verbal, body language, gestures, postures, gait,	
	dressing sense, facial expressions, peculiarity of speaker (habits).	
	Rhetoric speech: Prepared speech (topics are given in advance, students get 10 minutes	
	to prepare the speech and 5 minutes to deliver, Extempore speech (students deliver	
	speeches spontaneously for 5 minutes each on a given topic), Storytelling (Each student	
	narrates a fictional or real-life story for 5 minutes each), Oral review (Each student	

	orally presents a review on a story or a book read by them)	
	Drafting skills: Letter, Report & Resume writing, business letters, reading & listening	
	skills	
	Activity: The teacher should teach the students how to write the letter, report and build	
	resume. The teacher should give proper format and layouts. Each student will write one	
	formal letter, one report and a resume.	
Unit 4	Formal Group Discussion, Personal Interview & Presentation skills	4 hrs.
	Topic comprehension, Content organization, Group speaking etiquettes, driving the	
	discussion & skills.	
	Preparation for personal interview: dress code, greeting the panel, crisp self-	
	introduction, neatness, etiquettes, language tone, handling embarrassing & tricky	
	questions, graceful closing.	
	Activity: Each batch is divided into two groups of 12 to 14 students each. Two rounds	
	of a GD for each group should be conducted and teacher should give them feedback.	
	Mock interview are to be conducted.	
Unit 5	Aptitude and analytical skills	8 hrs.
	Quantitative aptitude, Numerical reasoning, verbal reasoning, diagrammatic test,	
	situational tests, logical thinking.	
	Analytical skills: Definition, Types, problem solving	
Unit 6	Life skills	4 hrs.
	Time management, critical thinking, sound and practical decision making by dealing	
	with conflicts, stress management, leadership qualities	
	Activity: The teacher can conduct a case study activity to train students for decision	
	making skills. The teacher should conduct a session on stress management and guide	
	students on how to manage stress. The teacher may conduct a stress relieving activity in	
	the class. He/she may counsel students individually to know their problems and guide	
	them on dealing with them effectively.	
	1 1	
Suggeste	ed readings:	
	ics of Communication In English: Francis Sounderaj, MacMillan India Ltd.	
1. Bas 2. Eng	ics of Communication In English: Francis Sounderaj, MacMillan India Ltd. slish for Business Communication: Simon Sweeney, Cambridge University Press	
 Bas Eng An 	ics of Communication In English: Francis Sounderaj, MacMillan India Ltd.	

Course Outcomes (COts): On completion of this course, the student will be able to:

CO No.	СО	Cognitive level
AC201A.1	Identify their lacunas about some soft skills and try to overcome the same.	2
AC201A.2	Practice learned soft skills in real life and do their jobs more effectively.	3

		-201(B): Practicing Sports tural Development Related Audit (Optional: Campus-level)	course; Practical; 2 Credi	ts)
	Course Objectives (COb To motivate stu	s): dents towards sports and provide them	required training.	
SR	NAME OF THE	SYLLABUS OF THE	TIMING SE	MESTER

NO.	SPORT/GAME (Select ONE of the Following)	COURSE	(02 Hours in a Week)	
$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 9 \end{array} $	Volleyball Athletics Badminton Cricket Basketball Handball Kabaddi Kho-Kho Table-Tennis	 General Fitness Basic Fitness Specific Fitness History of the Game Basic Skill of the Game Major Skill of the Game Technique & Tactics of the Game Game Practice 	Morning : 07 to 09 AM OR Evening : 05 to 07 PM	Total 30 Hours in Each Semester
9 10	Table-Tennis Swimming	Game Practice		

CO No.	СО	Cognitive level
AC201B.1	Identify one or more sports of their choice and develop more interest to	2
	participate at University/National level sport events.	
AC201B.2	Practice the learned sports activities regularly in real life.	3

AC-201(C): Practicing Yoga
(Personality and Cultural Development Related Audit course; Practical; 2 Credits
(Optional: Campus-level)
Course Objectives:
• To motivate students towards yoga and provide them required training.
Yog: Meaning, Definition & Introduction, Objectives
Primary Introduction of Ashtanga Yoga
Preparation of Yogabhyas

- Omkar Sadhana, Prayer, Guru Vandana
- Sukshma Vyayamas
- Suryanamaskar (12 Postures)
- Asanas :
 - Sitting (Baithaksthiti) Vajrasana, Padmasan, Vakrasan, Ardha-Pashchimotanasanan
 Supine (Shayansthiti) Uttan Padaasan(Ekpad/Dwipad), Pavanmuktasana,
 - Viparitakarani Aasan, Khandarasan, Shavasana
 - Prone (Viparitshayansthiti) Vakrahasta, Bhujangasana, Saralhasta Bhujangasana, Shalabhasana(Ekpad/Dwipad), Makarasana
 - Standing (Dhandsthiti) Tadasana , TiryakTadasana, Virasana, Ardh Chakrasana
- Primary Study of Swasana: Dirghaswasana, Santhaswasana, JaladSwasana 6 Types
- Pranayama : Anuloma-viloma, Bhramari

On completion of this course, the student will be able to:

CO No.	СО	Cognitive level
AC201C.1	Identify and practice some Yoga asanas regularly in their life to remain healthy.	2
AC201C.2	Provide guidance and practice about Yoga to their friends, parents and relatives.	3

AC-201(D): Introduction to Indian Music

(Personality and Cultural Development Related Audit course; Practical; 2 Credits) (Optional: Campus-level)

Course Objectives:

- To motivate students towards Indian music and provide them minimum required training.
 Definition and brief about generation of Swar, Saptak, Thaat, Raag, Aavartan, Meend, Khatka, Murkee, Taal, Aalaap etc.
 Taal and its uses Treetaal, Daadraa, Zaptaal, Kervaa.
 Information of Badaakhyaal, Chhotaakhyaal (one), Sargam, Lakshangeet (information)
 - Detailed information of Tambora
 - Detailed information of Harmonium and Tablaa.
 - Five filmy songs based on Indian Classical Music (Theory and Presentation)
 - Sound Management Basic information of Sound Recording (including Practicals)
 - Composition of Music as per the Story
 - Preparing news write-ups of the Seminars, Library Musical Programmes held at the nearest Akashwani, by personal visits.

Course Outcomes (COts):

CO No.	СО	Cognitive level
AC201D.1	Identify different types of Indian music.	3
AC201D.2	Develop more interest to learn and practice Indian music.	4

Distribution of Course Papers for M.Sc. Part II (Physics)

Subject Code	Title of the Paper		Duration (Hrs./Wk)	Max. Mark	Exam. Time (Hrs.)
	M.Sc. Part II (Physics w	vith MS & ES)			
	Semester III : Theo	ory Courses			
MS/ES- 301	Atomic and Molecular Physics	Core course	04	100	03
MS/ES- 302	Solid Stats Physics	Core course	04	100	03
MS/ES-303	MS: Elements of Materials Science ES: Renewable Energy	Core course	04	100	03
MS/ES-305	Project	Elective course	04	100	03
	Semester III : Pract	ical Courses	•		
MS/ES-304	Special Laboratory - I	Core course	04+04	100	06
AC- 301A/B/C/D	Choose one out of Four (AC-301A/ AC-301B/ AC-301C/ AC-301D) from Technology + Value Added Courses	Audit course	02	100	
	Semester IV : Theo	ry Courses			
MS/ES- 401	Nuclear Physics	Core course	04	100	03
MS/ES- 402	MS: Materials Synthesis Methods ES: Solar Photovoltaic Grid Connected Systems	Core course	04	100	03
MS/ES- 403	MS: Characterization of Materials ES: Energy Conversion and Management	Core course	04	100	03
MS/ES- 405	Project	Elective	04	100	03
		course			
	Semester IV : Pract	ical Courses	-		
MS/ES- 404	Special Laboratory - II	Core course	04+04	100	06
AC-	Choose one out of Four (AC-401A/ AC-401B/	Audit course	02	100	
401A/B/C/D	AC-401C/ AC-401D) from Professional and Social + Value Added Courses				

M.Sc. Part II Semester III (Physics): Core Courses

	MS/ES - 301: ATOMIC AND MOLECULAR PHYSICS	
	Course Objectives:	
	1. To learn atomic and molecular spectroscopy.	
	2. To learn related experiments based on theory and study the practice necessary	
	for solving the problems in atomic and molecular physics.	
Unit 1	Structure of Atom	06 L
	Various atomic models- survey-brief ideas with assumptions, postulates and	
	shortcomings, Quantum states of an electron in an atom, Quantum numbers, Electron	
	spin, Stern-Gerlach experiment, Vector atom model- its need/important.	
Unit 2	Atom model for two valence electron	12 L
	Various coupling schemes: LL, SS, LS and jj, Pauli exclusive principle, Coupling	
	principle, factors for LS coupling, Lande interval rule, JJ branching rule, selection	
	rules, magnetic moment of atom, Lande g factor, Zeeman effect, intensity rules,	
	calculation of Zeeman pattern, Paschen Back effect-LS and jj coupling and Paschen	
	Back effect, Breit's scheme for derivation of spectral terms, Pauli's exclusive	

	principle. Stark effect.	
Unit 3	Complex spectra	06 L
	Displacement law, alternation law of multiplicities, vector model for more valance	
	electrons, Lande interval rule, inverted terms, Hund's rule, Zeeman effect and	
TT A A	magnetic quantum numbers in complex spectra, magnetic energy and Lande g factor	067
Unit 4	Hyperfine structure	06 L
	Introduction, hyperfine structure and Lande interval rule, nuclear interaction with one	
	valance electron, hyperfine structure of two or more electron, Zeeman effect in hyperfine structure.	
Unit 5	hyperfine structure, Back Gouldsmit effect in hyperfine structure Pure rotational Structure	10 I
Unit 5	Rotation of linear system (classical and quantum mechanical), rigid rotator, rotational	101
	energy levels and their populations, interaction of rotation with rotating molecules,	
	rotational spectra of rigid rotators, selection rules for linear molecules, determination	
	of moment of inertia and bond length from rotational spectra, isotope effect on	
	rotational spectra, relative intensities of spectral lines	
Unit 6	Pure vibrational spectra	06 L
	Vibrations of two particles connected by spring (classical), Harmonic oscillators,	
	vibrational energies of diatomic molecules, interaction of radiation with vibrating	
	molecules, an-harmonic oscillator, deduction of molecular properties from vibrational	
TI :4 7	spectra of diatomic molecules	04 T
Unit 7	Rotation and vibration spectra	04 I
	Diatomic vibrating rotator coupling of rotation and vibration, rotation-vibration	
	spectra, selection rules and transition for vibrating rotator, intensities in rotation and	
	vibration spectrum, parallel and perpendicular bands of linear molecules, Isotope	
	effect-vibration.	
Unit 8	Electronic spectra of diatomic molecules	10 L
	Electronic energy curves, potential energy curves stable and unstable molecular states,	
	vibration structure of electronic transitions, general formula, graphical representation,	
	isotopes effect, rotational structure of electronic spectra, the branches of band, band head formation and shading of bands: Fortrat diagram, intensities in electronic bands-	
	Vibrational structure-Frank Condon principle, absorption and emission, rotational	
	structure, transition	
Sugges	ted readings:	
00	Introduction to atomic and nuclear physics (Van Norstrand Reinhold (east- West Press) by	v H. E
	White)	
	Introduction to atomic spectra (Mc. Graw hill, International Edition) by H. E. White)	
	Atoms and Molecules: An introduction for students of Physical chemistry (W. A. Benjami	n Inc.
	New York) by Martin Karplus and Richard N. Porter)	
	Atomic physics, (Oxford Master Series in atomic, optical and laser physics) by Christophe	r I
	Foot.	1 J.
	Introduction to atomic spectra (Mc. Graw hill, International Edition) by H. E. White	
		G
	Molecular structure and spectroscopy, 2 nd edition (PHI learning Pvt. Ltd. New Delhi) by	U.
	Aruldhas	
	Fundamentals of Molecular Spectroscopy (McGraw-Hill Publishing Company by	
	Colin Banwell).	

Course Outcomes (COts): On completion of this course, the student will be able to:

CO No.	СО	Cognitive level
C301.1	Describe the atomic spectra of one and two valance electron atoms.	1
C301.2	Explain the change in behavior of atoms in external applied electric and magnetic field	2
C301.3	correlate rotational, vibrational, electronic and rotation-vibration spectra of molecules	4

	MS/ES - 302: Solid State Physics	
	 Course Objectives: ➤ 1. To understand the different theories of specific heat, conductivity and band theory of solids. ➤ 2. To understand the classical and quantum theory concepts of magnetization, 	
	polarization superconductivity etc. of materials.	
Unit 1	Specific heat and lattice vibrations Classical theory of specific heat and it's drawbacks, Einstein theory of specific heat, vibrational modes of a continuous medium, Debye approximation, The Born cut-off procedure, Vibrational modes of a finite one-dimensional lattice of identical and diatomic lattice.	08 L
Unit 2	Free electron theory of metals The free electron theory of metals, electronic specific heat, Response and relaxation phenomena, Drude model of electrical and thermal conductivity, the Fermi surface, electrical conductivity; effects of the Fermi surface, Fermi surfaces: its characteristics	08 L
Unit 3	The Band Theory of Solids The formation of bands in solids, The Bloch theorem, The Kronig-Penny model, The motion of electrons in one dimension according to the band theory, the distinction between metals, insulators and intrinsic semiconductors, the concept of a hole. Brillouin zones	08 L
Unit 4	Dielectric and Optical Properties of Insulators	12 L
	Static fields: Macroscopic description of the static dielectric constant, The static electronic and ionic polarizabilities of molecules, Oriental polarization, The internal field according to Lorentz and the Clausius-Mosotti formula. Alternating fields: The complex dielectric constant and dielectric losses, dielectric losses and relaxation time, The Classical theory of electronic polarization and optical absorption. Ferroelectricity: General properties of ferroelectric materials, classification, ferroelectric domains	
Unit 5	Magnetism Magnetic materials and their properties, Quantum theory of paramagnetism, Diamagnetism, Ferromagnetism: The Weiss molecular field and its interpretation, Temperature dependence of spontaneous magnetization. Antiferromagnetism: Molecular field theory, two sub lattice model.	12 L
Unit 6	Superconductivity	12 L
	Introduction, Meissner effect, The critical field, Thermodynamics of superconducting transition: The heat capacity and stability of superconducting state, Electrodynamics of superconductors: The London equation, coherence length and penetration depth, BCS	

	theory of superconductivity, the condensate, The Josephson Tunneling: DC and AC
	effect, Introduction to high Temperature superconductivity.
Suggest	ed readings:
1	1. J. Dekker, Solid State Physics, Macmillan India Limited, 1991.
2	2. Charles Kittel, Introduction to Solid State Physics, John Wiley and Sons.
3	3. H. P. Myers, Viva Books Private Limited, Second Edition.
4	4. N. W. Ashcroft and N. D. Mermin, Solid State Physics, CBS publishing Asia Ltd.
5	5. M. Ali Omar, Elementary Solid State Physics, Pearson Education.

CO No.	СО	Cognitive level
C302.1	Explain the basic theories governing the different properties of solids.	2
C302.2	Students will be able to establish various theories of different classes of solids showing varying properties like magnetism, polarization and superconductivity	3
C302.3	evaluate the basic theories to real problems	5

	ES-303: RENEWABLE ENERGY	
	 Course Objectives: > 1 to understand the different forms of renewable energy sources. > 2. to understand applications of these sources and their impact on the environment. 	
Unit 1	Introduction to energy studies Importance of energy, various relevant definitions, Energy and development of society, various external and internal, kinetic and potential energy forms, types of fuels, the Sun, solar radiation, extra-terrestrial distribution of solar radiation, atmospheric attenuation, apparent motion of sun, sunrise, sunset, day length, instruments for measuring solar radiation.	12 L
Unit 2	Fuel cells and hydrogen energy Concept and characterization of fuel cells, electrochemistry basics, alkaline fuel cells, phosphoric acid fuel cells, components, characteristics, merits, demerits and application of fuel cells. Production of Hydrogen (electrochemical, thermo-chemical, fossil fuels, solar energy methods), characteristics, storage, transportation, utilization of hydrogen, safety and Energy management issues	12 L
Unit 3	Wind energy Energy in wind, Principle of wind energy conversion into useful energy, power in wind, wind velocity and height from ground, types and components of Wind Energy Conversion Systems (WECS), application, merits and demerits of WECS, dependence of wind power on various factors, criteria of site selection for installation of WECS	12 L
Unit 4	Hydel energy Hydel Energy, concept and operation hydroelectric energy, scenario of hydroelectric energy in India, classification of hydropower schemes, various types of hydroelectric	12 L

	turbines, properties, advantages, applications.	
Unit 5	Bio energy	12 L
	Biomass and its conversion to useful energy, photosynthesis, Biogas generation,	
	designs of Biogas plants, use of biogas as a fuel, site selection criteria for biogas plant,	
	thermal gasification of biomass, types and operation of gasifiers.	
Sugges	ted readings:	
1.	Pattern of Energy use in developing countries by Ashok V. Desai, Wiley Eastern Limited.	
2. Solar Energy by S P Sukhatme.		
3. Fuel Cells by B. Viswanathan, M. AuliceScibioh, Universities press.		
4. Non-Conventional Sources of Energy by G. D. Rai, Khanna Publishers.		
5. Wind Energy Systems by G. L. Johnson, Kansas State University		

CO No.	СО	Cognitive level
C303.1	Students will memorize the basic theories of different renewable energy sources	1
C303.2	Explain technical aspects in these sources	2
C303.3	Manage the energy crisis amongst premises	6

	MS-303: Elements of Materials Science	
	Course Objectives:	
	The important objective of this course is to explore the fundamental	
	properties of various materials including metal, ceramics and insulators.	
	This course is also deal with various applications of materials.	
Unit 1	Classification of Materials	03 L
	Classification of Engineering Materials, Selection of materials, Level of structure, Modern material needs, structure-property relationship in materials	
Unit 2	Properties of materials	13 L
	Mechanical properties: Mechanical fundamentals, isotropy and anisotropy, stressand	
	strain, hooks law and modulus of materials, Poisson's ratio, stress-strain relation,	
	Important properties: strength, Elasticity, fatigue, ductility, toughness, stiffness,	
	malleability, plasticity, hardness, brittleness, factors affecting mechanical properties.	
	Electrical properties: Resistivity, conductivity, Ionic conductivity, Superconductivity,	
	Insulators, Semiconductors, factors affecting conductivity.	
	Thermal properties: Melting point, Thermal Shock, Heat capacity, Specific heat,	
	Thermal expansion and thermal conductivity.	
	Optical properties: Electromagnetic radiation, refraction, reflection, absorption,	
	transmission, color.	
	Magnetic properties: magnetization, magnetic moments, dipoles, magnetic domain,	
	diamagnetism, paramagnetism, ferromagnetism, ferrimagnetism, susceptibility and	

	curie temperature, hysteresis loss, Ferrites	
Unit 3	Phase diagram	12L
	Single and multi-phase solids, solid solutions, factors governing the solid solubility	
	(Hume Rotheryrules for primary solid solution), inter-metallic compounds, valency	
	compounds, electron compounds, interstitial compounds, Phase diagrams: Phase rule,	
	Unary and binary phase diagram, construction of phase diagram, Lever rule,	
	interpretation of phase diagram, Isomorphous system, eutecticsystem, eutectoid	
	system, peritectic system, micro structural diagram developments: Study of Pb-Sn, Fe-	
	C, Cu-Ni phase diagram	
Unit 4	Metallurgical thermodynamics and phase transformation	08L
	Thermodynamic origin of phase diagram, Crystal, grain and grain boundary,	
	Solidification and crystallization, nucleation, nucleation rate, crystal growth, rate of	
	crystal growth, surface energy, critical radius inheterogeneous and homogenous	
Unit 5	nucleation, allotropic transformation Polymeric materials	08 L
Unit J	Basic concepts of polymer, size of polymer, mechanisms of polymerization, molecular	
	weight, molecular shape, structure, configuration, crystallanity, mechanical, optical	
	and thermal properties of polymers, electrical properties - conducting polymers	
Unit 6	Ceramics	04L
Omt o	Classification of ceramics, structure of ceramics, silicates structure, polymorphism of	07L
	ceramics, mechanical, thermal and electrical properties of ceramic phases, clay and	
	clay materials	
Unit 7	Advanced materials	12L
	a) Nanomaterials: Concept of nanomaterials, electron confinement in infinitelydeep	
	square well, confinement in two and one dimensional well, idea of quantum well	
	structure, quantum dots, mechanical, electrical, thermal, magnetic and optical properties of nanomaterials.	
	b) Composite materials:	
	Concept of composite, Types of composite, agglomerated materials, reinforce material,	
	Surface coating: Laminates, metallic coatings.	
	c) Materials for Solar energy:	
	Photovoltaic materials: Inorganic materials (Si, GaAs), Organic materials, perovskite,	
G	photothermal: selective coatings	
	ted readings:	
	Material Sciences and Process, S. K. Hajara-Chaudhari, Indian BookDistributing Co.	
,	Material Science and Engineering, W.D. Callister, Jr. W, Wiley InternationalEditions, 2003.)	
	Material Science and Engineering, V. Raghavan, Prentice Hall of India Pvt. Ltd., New De	
	Physical Metallurgy Part I and II, Edited by R. W. Cahn and H_Haasan, NorthHolland, 190 Phase transformation in metals and allow devide A. Parter and K.E. Easterlin	
	Phase transformation in metals and allys, david A. Porter and K.E. Easterlin	g,(Var
	NostarndRcinhold Co., Newyork).	. 14
	Nano: The essentials – Understanding Nanoscience and Nanotechnology, T.Pradip, Tat	ta Mao
	Graw Hills	
7)	Nanotechnology, Booker and Boysen, Wiley.	

CO No.	СО	Cognitive level
C303.1	Explain various fundamental properties of materials.	2
C303.2	Conclude physics behind thermodynamics and alloy formation	4
C303.3	Recognize the basics of advanced materials	1

	MS/ES - 304: Special Laboratory - I	
	Course Objectives:	
	to understand and correlate results of experimentations as well as	theory.
	\succ To get the thorough fundamental knowledge of practical's par	rticularly
	based on the specializations.	
	To develop intellectual communication skills and discuss the	ne basic
	principles of scientific concepts in a group.	
	COMMON EXPERIMENTS	
	1. Determination of Curie temperature of given magnetic material.	
	2. Determination of e/m ratio of an electron.	
	3. Determination of Susceptibility: Gouy's Method.	
	4. Determination of Hall Coefficient and mobility (Hall Effect).	
	5. Measurement of waves by Ultrasonic Interferometer.	
	6. Study of Active Band Pass Filter using electronic circuits.	
	EXPERIMENTS IN MATERIALS SCIENCE	
	1. To determine the dielectric Constant of BaTiO _{3.}	
	2. To study the Phase diagram of Pb-Sn alloy.	
	3. To study the Hysteresis loop for Ni material.	
	4. Measurement of Heat Capacity of different metals.	
	EXPERIMENTS IN ENERGY STUDIES	
	1. Effect of tilt of solar module and Series and Parallel combination of Sl	PV
	modules.	
	2. To study of emissivity of various metals.	
	3. To determine phenomenon of heat transfer through lagged pipe.	
	4. Solar Cell Simulation Using PC1D Simulator.	
	(*Only ten practical's has to be performed by MS and ES students.)	
Sugge	sted readings:	
1)	Material Sciences and Process, S. K. Hajara-Chaudhari, Indian BookDistributing	
2)	Material Science and Engineering, W.D. Callister, Jr. W, Wiley InternationalEdi	
3)	Material Science and Engineering, V. Raghavan, Prentice Hall of India Pvt. Ltd	
4)	Introductory Electronic Devices And Circuits- Painter2nd Edition, 199	1, New Jerky;
	Regents/Prentice Hall.	
5)	PV Lab manual developed by NCPRE, IIT Bombay.	

On completion of this course, the student will be able to:

CO No.	СО	Cognitive level
C304.1	develop and conduct appropriate scientific experimentation	3
C304.2	Analyze and interpret data and use scientific judgment to draw conclusions.	4
C304.3	Integrate new knowledge as needed using appropriate experimentation strategies.	6

M.Sc. Part II Semester III Physics: Elective Course

MS/ES - 305: Project	
Course Objectives:	
to facilitate student to carry out extensive research and development project or technical project.	
to indentify scientific problem, gap identification, development of methodology for problem solving.	
to interpret the findings, presentation of results and discussion of findings in context of national and international research.	

Course Outcomes (COts):

On completion of this course, the student will be able to:

CO No.	СО	Cognitive level
C305.1	Memorize in-depth knowledge and use adequate methods in the major	1
	subject/field of study.	
C305.2	Critically evaluate different technical/research solutions	5
C305.3	Identify the issues that must be addressed within the framework of the specific	2
	dissertation in order to take into consideration	

M.Sc. Part II Semester III Physics: Audit Courses

AC-301(A): Computer Skills		
	(Technology + Value added Audit course; Practical; 2 Credits)	
	(Optional: Campus + Program level)	
Course Objectives (CObs):		
• To in	culcate different daily useful computer skills among students.	
Unit 1	Elements of Information Technology	2 hrs
	1.1 Information Types: Text, Audio, Video, and Image, storage formats	
	1.2 Components: Operating System, Hardware and Software, firmware	
	1.3 Devices: Computer, Mobile Phones, Tablet, Touch Screen, Scanner, Printer,	
	Projector, smart boards	
	1.4 Processor & Memory: Processor functions, speed, Memory types: RAM /ROM	

	/HDD /DVD-ROM/Flash drives, memory measurement metrics	
Unit 2	Office Automation-Text Processing	5 hrs
	2.1 Views: Normal View, Web Layout View, Print Layout View, Outline View,	
	ReadingLayout View	
	2.2 Working with Files: Create New Documents, Open Existing Documents,	
	SaveDocuments to different formats, Rename Documents, Close Documents	
	2.3 Working with Text: Type and Insert Text, Highlight Text, Formatting Text, Delete	
	Text, Spelling and Grammar, paragraphs, indentation, margins	
	2.4 Lists: Bulleted and Numbered Lists,	
	2.5 Tables: Insert Tables, Draw Tables, Nested Tables, Insert Rows and Columns,	
	Moveand Resize Tables, Moving the order of the column and/or rows inside a	
	table, TableProperties	
	2.6 Page Margins, Gutter Margins, Indentations, Columns, Graphics, Print Documents,	
	2.7 Paragraph Formatting, Paragraph Attributes, Non-printing characters	
	2.8 Types of document files: RTF, PDF, DOCX etc.	
Unit 3	Office Automation-Worksheet Data Processing	5 hrs
Unit 5	3.1 Spreadsheet Basics: Adding and Renaming Worksheets, Modifying Worksheets,	5 1115
	3.2 Moving Through Cells, Adding Rows, Columns, and Cells, Resizing Rows and	
	Columns, Selecting Cells, Moving and Copying Cells	
	3.3 Formulas and Functions: Formulas, Linking Worksheets, Basic Functions,	
	AutoSum, Sorting and Filtering: Basic Sorts, Complex Sorts, Auto-fill, Deleting	
	Rows, Columns, and Cells	
TT *4 4	3.4 Charting: Chart Types, drawing charts, Ranges, formatting charts	(have
Unit 4	Office Automation- Presentation Techniques and slide shows	6 hrs
	4.1 Create a new presentation, AutoContent Wizard, Design Template, Blank	
	Presentation, Open an Existing Presentation, PowerPoint screen, Screen Layout	
	4.2 Working with slides: Insert a new slide, Notes, Slide layout, Apply a design	
	template, Reorder Slides, Hide Slides, Hide Slide text, Add content, resize a	
	placeholder or textbox, Move a placeholder or text box, Delete a placeholder or	
	text box, Placeholder orText box properties, Bulleted and numbered lists, Adding	
	notes	
	4.3 Work with text: Add text and edit options, Format text, Copy text formatting,	
	Replacefonts, Line spacing, Change case, Spelling check, Spelling options	
	4.4 Working with tables: Adding a table, Entering text, Deleting a table, Changing	
	rowwidth, Adding a row/column, Deleting a row/column, Combining cells	
	,Splitting a cell,Adding color to cells, To align text vertically in cells, To change	
	table borders, Graphics, Add clip art, Add an image from a file, Save & Print, slide	
	shows, slideanimation/transitions.	
Unit 5	Internet & Applications:	4 hrs
	5.1 Computer Network Types: LAN, PAN, MAN, CAN, WAN, Defining and	
	describing theInternet, Brief history, Browsing the Web, Hypertext and hyperlinks,	
	browsers, Uniform resource locator	
	5.2 Internet Resources: Email, Parts of email,	
	5.3 Protecting the computer: Password protection, Viruses, Virus protection	
	software, Updating the software, Scanning files, Net banking precautions.	
	5.4 Social Networking: Features, Social impact, emerging trends, issues, Social	
	Networking sites: Facebook, Twitter, linkedin, orkut, online booking services	
	5.5 Online Resources: Wikipedia, Blog, Job portals, C.V. writing	
	5.6 e-learning: e-Books, e-Magazines, e-News papers, OCW(open course wares):	
T T 1	Sakshat(NPTEL) portal, MIT courseware	
Unit 6	Cloud Computing Basics	3 hrs
	6.1 Introduction to cloud computing	
	6.2 Cloud computing models: SAS, AAS, PAS	
1	6.3 Examples of SAS, AAS, PAS (DropBox, Google Drive, Google Docs, Office 365	

Prezi, etc.) Suggested readings: 1 TCL "Introduction to Computers and Application Software" Publisher: Jones & Bartlett Learning

- TCI, "Introduction to Computers and Application Software", Publisher: Jones & Bartlett Learning, 2010, ISBN: 1449609821, 9781449609825
- Laura Story, Dawna Walls, "Microsoft Office 2010 Fundamentals", Publisher: Cengage Learning, 2010, ISBN: 0538472464, 9780538472463
- 3. June Jamrich Parsons, Dan Oja, "Computer Concepts Illustrated series", Edition 5, Publisher Course Technology, 2005, ISBN 0619273550, 9780619273552
- 4. Cloud computing online resources

Course Outcomes (COts):

CO No.	СО	Cognitive level
AC301A.1	Identify their lacunas about some computer skills and try to overcome the same.	2
AC301A.2	Practice the learned computer skills in real life and do their jobs more effectively.	3

	AC-301(B): Cyber Security	
	(Technology + Value added Audit course; Practical; 2 Credits)	
	(Optional: Campus + Program level)	
Course C	Objectives (CObs):	
• To m	nake students aware of different daily useful cyber security skills/rules.	
Unit 1	Networking Concepts Overview	3 hrs
	Basics of Communication Systems, Transmission Media, ISO/OSI and TCP/IP models,	
	Network types: Local Area Networks, Wide Area Networks, Internetworking, Packet	
	Formats, Wireless Networks: Wireless concepts, Advantages of Wireless, Wireless	
	network architecture, Reasons to use wireless, Internet	
Unit 2	Security Concepts	7 hrs
	Information Security Overview, Information Security Services, Types of Attacks,	
	Goals for Security, E-commerce Security, Computer Forensics, Steganography.	
	Importance of Physical Security, Biometric security & its types, Risk associated with	
	improper physical access, Physical Security equipments.	
	Passwords: Define passwords, Types of passwords, Passwords Storage – Windows &	
	Linux.	
Unit 3	Security Threats and vulnerabilities	7 hrs
	Overview of Security threats, Hacking Techniques, Password Cracking, Types of	
	password attacks, Insecure Network connections, Wi-Fi attacks & countermeasures,	
	Information Warfare and Surveillance.	
	Cyber crime: e-mail related cyber crimes, Social network related cyber crimes,	
	Desktop related cyber crimes, Social Engineering related cyber crimes, Network	
	related cyber crimes, Cyber terrorism, Banking crimes	

Unit 4	Countermonter	5 hrs
Unit 4	Cryptography	5 1115
	Understanding cryptography, Goals of cryptography, Types of cryptography,	
	Applications of Cryptography, Use of Hash function in cryptography, Digital signature	
	in cryptography, Public Key infrastructure	
Unit 5	System & Network Security	3 hrs
	System Security: Desktop Security, email security: PGP and SMIME, Web Security:	
	web authentication, Security certificates, SSL and SET, Network Security: Overview	
	of IDS, Intrusion Detection Systems and Intrusion Prevention Systems, Overview of	
	Firewalls, Types of Firewalls, VPN Security, Security in Multimedia Networks, Fax	
	Security.	
Unit 6	OS Security	2 hrs
	OS Security Vulnerabilities updates and patches, OS integrity checks, Anti-virus	
	software, Design of secure OS and OS hardening, configuring the OS for security,	
	Trusted OS.	
Unit 7	Security Laws and Standards	3 hrs
Omt /		5 11 5
	Security laws genesis, International Scenario, Security Audit, IT Act 2000 and its	
~	amendments.	
Suggest	ed readings:	
1. Skil	Is Factory, Certificate in Cyber Security, Text Book Special edition, Specially published for	or KBC
NM	U, Jalgaon	
2. BPE	Publication, "Fundamentals of Cyber Security", Mayank Bhushan, Rajkumar Singh Ra	thore,
	f Jamshed	
3. Crea	teSpace Independent Publishing Platform, "Cyber Security Basics", Don Franke, ISBN-1	3: 978-
	2952190ISBN-10: 1522952195	
4. Onli	ne references	

CO No.	СО	Cognitive level
AC301B.1	Practice learned cyber security skills/rules in real life.	3
AC301B.2	Provide guidance about cyber security skills/rules to their friends, parents and relatives.	2

	AC-301(C): C- programming		
	(Technology + Value added Audit course; Practical; 2 Credits)		
	(Optional: Campus + Program level)		
Course C	Dbjectives (CObs):		
≻ t	o develop the skill of computer language which may help students for solving of nur	nerical	
p	problems		
≻ t	o adapt the knowledge of numerical methods of solving differential equations.		
Unit 1	Basics of C	10	
	What is C, History and Importance of C, Getting started with C, The C character set,	hrs	
	constant variable and key words, Type of C constant, Rule for constructing: Integer		
	constant, real constant, character constant, variable names, Type of C variables, C key		
	words, first C program, Compilation and execution.		
Unit 2	Unit II Decision control statement	10	

	If statement, the if-else statement, use of logical operator, loops, the while loop, the for loop, the break statement, the continue statement, the do while loop, decision using	hrs
	switch, switch versus if else ladder.	
Unit 3	Unit-III Arrays and pointers	10
	One-dimensional arrays, passing arrays to functions, multidimensional arrays, strings. Basics of pointers, pointers and one-dimensional arrays, pointer arithmetic, pointer subtraction and comparison, similarities between pointers and one-dimensional arrays.	hrs
Unit 4	Programming using C-Language Part -I	10
	(A) Solving roots by using numerical methods	hrs
	Numerical solution of algebraic and transcendental equations by simple iteration	
	methods: Bisection method, Regula falsi method (method of false position), Newton-	
	Raphson method. Algorithm and Flowchart	
	(B) Solution of simultaneous linear system of equations	
	Iterative method for solving linear equations by Gauss-Jacobi and Gauss-Seidel method. Algorithm and Flowchart.	
Unit 5	Programming using C-Language Part -II	10
	(A) Solving integration	hrs
	Numerical integration by Trapezoidal rule, Simpson's rules, Gaussian quadrature formulae, Error calculations. Computer implementation for Trapezoidal and Simpson	
	rule.	
	(B) Solving differential equations Numerical solution of ordinary differential equation using Taylor Series method, Euler method, Modification of Euler's methods, Runge-Kutta method of order two to four. Error calculation, Computer implementation for RK method.	
Sugges	ted readings:	
	Jain M.K., Iyengar S.R.K., Numerical methods for Scientific and Engineering Computatied edition, New Age International (P) Ltd, 1996.	on, 3rd
2.	Introductory Methods of Numerical Analysis- S. S. Sastri, 2nd Edition, Prentice Hall o Pvt. Ltd., 1992.	of India
3.	V. Rajaraman, Computer oriented numerical methods, 3 rd Edition, PHI learning privat 2008.	te Ltd.,
4.	Madhumangal Pal, Numerical analysis for scientists and engineers: Theory and C program Narosa publishing house, 2008.	
5.	Y. Kanetkar, Let us 'C', BPB publication, 2007.	
6.	E. Balaguruswamy, Programming in ANSI C, McGraw Hill education India Pvt. Ltd, 2017	
7.	Byron S. Gottfried, Programming with C, Schaum's outlines, Tata McGraw Hill compare 2006.	ny Ltd,

Course Outcomes (COts): On completion of this course, the student will be able to:

CO No.	СО	Cognitive level
AC301C.1	Judge the requirement of C-programs independently according to numerical methods.	2
AC301C.2	Estimate the solution of differential equations with C programming and numerical methods.	5

AC-301(D): Industrial Materials		
(Technology + Value added Audit course; Optional: Program-level; Practical; 2 Credits)		
Course	Objectives (CObs):	
	To develop the knowledge of various materials used in industry	
	To gain the relationship between the properties of various materials with their applications	1
Unit 1	Requirement of Materials for Industry	12
	Introduction to Industrial Materials, Classification of Materials: Metals/alloys,	hrs
	Ceramic, glasses and glass-ceramic, polymers(plastics), semiconductors and	
	composites, Functional Materials: Aerospace, Biomedical, Electronic materials, Smart	
Unit 2	materials, Magnetic materials and Energy related materials	10
Unit 2	Properties of Materials Mechanical (Stress, Strain and Hardness), electrical (resistivity and mobility) optical	hrs
	(refractive index, transmission and band gap) and magnetic properties (susceptibility	111.5
	and permeability) of materials.	
Unit 3	Advanced Materials	08
011100	Ceramics, Polymers, Composites, Optical materials, Super alloys, Pervoskites,	hrs
	Semiconducting materials.	
Unit 4	Nano and Biomaterials	08
	Fundamentals of nanostructured materials, Significance of nanostructured materials,	hrs
	Structural aspects, nano structures, materials for biosensors.	
Unit 5	Applications	12
	Metals and alloy, Ceramics: Glasses, Clay product powder and tape casting. Polymers:	hrs
	Plastics, elastomers, optical fibers. Composites: reinforced, laminar and sandwich	
	panel type. Nano materials: CNT, Graphene, Bio-nano sensors. Semiconductors:	
0	Integrated circuits, Solar cells.	
00	red readings:	
1.	Materials Science and Engineering: An Introduction, William D. Callister, Wiley (2010)	
2.	Introduction to Materials Science for Engineers, 8/E; James F. Shackelford, Pearson (201:	
3.	The Science and Engineering of Materials, 4 th ed., Donald R. Askeland and Pradeep P	. Phule
	Publisher: Cengage Learning (2010)	
4.	Instrumental Methods of Analysis, Willard, Merritt, Dean, Settle, CBS Publish Distributors (2004)	ners &
5.	Principles of Instrumental Analysis, Skoog, Holler, Nieman; Publisher: Brooks Cole; 6 (2006).	edition
6.	Characterization of Materials, Eliton N. Kauffmann, Wiley (1999).	

CO No.	СО	Cognitive level
AC301D.1	Explain various properties of materials required for particular scientific application.	2
AC301D.2	Interpret the material property relationship in detail.	3
AC301D.3	Estimate necessity of materials for industry applications.	3

M.Sc. Part II Semester IV (Physics): Core Courses

	MS-401: Nuclear Physics	
	Course Objectives:	
	 to provide students with an understanding of basic radiation interaction. 	
	Explore the fundamental principle of detection techniques for nuclear physics	
	➢ In addition to gain in-depth knowledge of radioactive decays, nuclear	
	reactions and elementary particle physics etc.	
Unit 1	Nuclear Properties and its concept	06 L
	Introduction: Constituent of Nuclei and its Mass, Nuclear forces, Stability of Nuclei,	
	Nuclear Mass Radius, Mass defect and Packing fraction, Systematic of Nuclear	
	Binding Energy and Stability, Nuclear Magnetic Dipole Moments, Electric Quadrupole	
Unit 2	moment.	08 L
Unit 2	Nuclear models	08 L
	Introduction, Liquid drop model: Semi-empirical mass formula, Applications of semi-	
	empirical mass formula, Limitations of liquid drop model, Shell Model- Predictions of	
	the Shell Model, Achievements & Failures of shell Model, Collective Model	10 1
Unit 3	Radioactivity	12 L
	Introduction, Law of radioactive disintegration, Units of Activity, Law of radioactive	
	decay constant, Basic concepts of half life, mean lifetime of nuclei, Theory of	
	successive transformation, Radioactive equilibrium, Radioactive dating methods.	
	Production of various radioisotopes and its Application in various fields, Alpha	
	particle energy and Geiger-Nuttal law, Neutrino hypothesis, The Fermi theory of beta-	
	decay, selection rule for beta decay, Gamma ray spectra, radioactive transitions in	
	nuclei for gamma decay	
Unit 4	radiation detectors	08 L
	Introduction, Interaction of charged particle with matter, Ionization and transport	
	phenomena in gases, Ionization chamber, Proportional counter, GM counter,	
	Scintillation detector, Semiconductor detector, Bubble Chamber, Cloud Chamber	
Unit 5	Mass Spectrograph and nuclear accelerators	06 L
	Introduction, Mass spectrograph, Brain bridge Mass Spectrograph, The van de Graff	
	generator, Cyclotron, Betatron, Electron synchrotron, Proton synchrotron, Linear	
	accelerator	
Unit 6	Reaction dynamics, nuclear reactors	08 L
	Introduction, Types of Nuclear Reactions: Nuclear fission, Fission Chain Reaction,	
	Conservation Laws in Nuclear Reactions, Q-value of Nuclear Reaction, Compound	
	Nucleus Hypothesis, Four Factor Formula, Multiplication Factor, Nuclear fusion, the	
	plasma, Stellar energy, Basic design of Nuclear Reactor, List of Different Types of	
	Reactors Developed in India	
Unit 7	Elementary particles	12 L
	Classification of Elementary Particles, Decays of Elementary Particles, Fundamental	
	interactions in nature, Concept of force carrier, Yukawa Potential of interaction,	
	Conservation Laws of elementary particles, Gelmann-Nishijima formula, Elementary idea about CP and CPT invariance, Quarks Model: Classification and properties of	
	quarks, Strong isospin, Strange quark, Quark structure in meson and baryons,	
	Quantum Chromodynamics and electrodynamics, Gellman-Okubo mass formula	
Suggest	ted readings:	

- 1. K.S.Krane, 1988, Introductory Nuclear Physics, Wiley, India.
- 2. B.L.Cohen, Concepts of Nuclear Physics, Tata McGraw Hill.
- 3. I.Kaplan, 1989, Nuclear Physics, 2nd Edition, Narosa, New Delhi.
- 4. S.N.Ghoshal, Atomic and Nuclear Physics, S. Chand.
- 5. D.C.Tayal, Nuclear Physics, Himalaya Publishing House.
- 6. R.D.Evans, The Atomic Nucleus, Tata McGraw Hill.
- 7. S. S. Kapoor and V. S. Rmanurthy. Nuclear radiation detectors (Wiley Eastern Limited, New Delhi,) 1986.
- 8. G.F.Knoll, Radiation Detection and Measurement, 3rd edition, Wiley India.

CO No.	СО	Cognitive level
C401.1	Describe the basic interaction mechanisms for charged particles and electromagnetic radiation and explain the working principles behind detectors and their characteristic properties with respect to energy resolution, efficiency etc.	2
C401.2	Identify the mechanism and kinematics of nuclear reactions	1
C401.3	Describe the basic features involved in alpha and beta decays and nuclear forces	2

	ES-402: Solar Photovoltaic grid connected systems	
	 Course Objectives: to make students acquainted with grid connected solar photovoltaic systems. to enable students to develop insights into components of the system as well as design and installation of such systems. 	
Unit 1	Solar photovoltaic cells and modules	08 L
	Factors affecting performance of solar cells: temperature, irradiance; Types of solar cells: Crystalline(Monocrystalline and polycrystalline),Thin film solar cells (a-Si, CIS, CdTe); structure of a solar module, Electrical protection (Bypass diodes, blocking diodes)	
Unit 2	INVERTERS	09 L
	Purpose of inverters, Grid connected inverters Vs stand alone inverters, types of grid	
	connected inverters, PV to inverter interface, inverter protection systems, power quality, monitoring, inverter efficiency	
Unit 3	Mounting system and balance of system	09 L
	Introduction, calculating the wind loading, roof mounted systems, PV array row spacing, ground mounted systems	
	BOS: Introduction, cabling, array string protection and disconnect switches, lighting	
	protection, array junction box, PV main disconnection devices, metering, system monitoring	
Unit 4	Site assessment and pre-installation decisions	09 L

-		
	Introduction, undertaking a site assessment, choosing PV module, choosing inverter,	
	choosing mounting system type, determining maximum number of modules that can fit	
	on the roof	
Unit 5	Inverter matching and system protection	09 L
	Matching PV array to Voltage, current and power rating of the inverter, Example.	
	Determining the protection equipment and switching, PV array maximum voltage,	
	circuit protection: over current, Disconnection devices, system earthing, connecting the	
	system to grid	
Unit 6	Cable sizing and system installation	08 L
	Determining the size of DC and AC cables: current carrying capacity, voltage drop and	
	power losses, Standards, equipment selection, installation preparation, equipment	
	installation, monitoring equipment and signage	
Unit 7	Economics of grid connected systems	08 L
	Introduction, simple payback, lifecycle costing, cost of total PV system, valuing a PV	
	system	
Suggest	ted readings:	
1. Grie	d Connected PV Systems Design and Installation Published by Global Sustainable	Energy
Sol	Solutions 1 st edition.	
2. Gri	2. Grid-Connected Photovoltaic Power Generation: Technologies, Engineering Economics, and Risk	
Ma	nagement1 st edition by Peter Gevorkian Cambridge University Press.	

CO No.	СО	Cognitive level
C402.1	Interpret the concept of grid connected solar photovoltaic systems	3
C402.2	Evaluate different parts of the system with their required specifications	5
C402.3	Formulate different aspects related to designing and installation of the system	6
	Identify the economic aspects of the system	1

	MS-402: Materials Synthesis Methods	
Unit 1	 Course Objectives: ▶ to create an awareness of various material synthesis techniques. ▶ to facilitates the new insights as well as explores the fundamental principles of various materials synthesis techniques. ▶ to correlate material properties with experimental synthesis techniques. Bulk materials synthesis Importance of the materials and methods, formation of thin and thick films with application, Synthesis of Bulk (Powder form) Materials: Basic concept, process description, preparation, blending of powder, compacting and sintering, advantages and disadvantages, application of the bulk material and a case study 	06 L
Unit 2	Crystal growth	08 L
	Importance of growing crystals and their applications, thermodynamic theory of crystal	

	growth. Growth from solution methods: growth from water solution, gel method, flux	
	method, hydrothermal method Growth from melt methods: Czochralski crystal pulling	
	(CZ), Bridgman-Stockbarger technique	
Unit 3	Thick film deposition	06 L
	Screen Printing: Basic aspects of the process, experimental set-up, substrate materials,	
	screen printing and firing process, advantages and disadvantages, a case study. Doctor	
	blade: Basic aspects of the process, experimental set-up, substrate materials, need of	
	annealing step, advantages and disadvantages, a case study	
Unit 4	Thin film deposition	
	Brief introduction regarding different methods for thin film formation (Physical and	
	chemical)	
	CHEMICAL METHODS:	00 T
	Chemical bath deposition (CBD) method: Introduction, experimental set-up, basic	09 L
	requirements, basic mechanisms: ion-by-ion, hydroxide cluster and complex	
	decomposition mechanism, deposition from acidic bath, effect of stirring, advantages	
	and disadvantages, a case study of CdS deposition, size quantization in CD films. Brief	
	idea about SILAR (Successive ionic layer adsorption and reaction) method, advantages	
	over CBD	
	ELECTROCHEMICAL DEPOSITION:	08 L
	Introduction, principle, Faradays laws of electrolysis, experimental set-up, electrode,	
	electrolyte, additives, power supply, substrate, Classification of electrodeposition:	
	potentiostatic, galvanostatic and cyclic voltametry, Steps involved in electrodeposition	
	process, nucleation and growth mechanism, advantages and disadvantages, a case	
	study	
	SPRAY PYROLYSIS:	06 L
	Principle, experimental set-up, preparative parameters: influence of temperature,	
	precursor's solution, Model for films deposition: Atomization of precursor's solution,	
	Aerosol transport, decomposition of precursor, advantages and disadvantages, a case	
	study of SnO_2 deposition	
	SPIN COATING:	03L
	Introduction, experimental set-up, Modeling spin coating, advantages and	
	disadvantages, a case study	
Unit 5	Physical methods	14 L
Unit 5	Introduction, physical vapor deposition (PVD) and Chemical Vapor deposition (CVD),	14 L
	Evaporation Methods: Thermal Evaporation (vacuum evaporation), Flash evaporation,	
	Laser evaporation, Molecular beam epitaxy, Chemical Vapor Deposition: Basic	
	aspects of CVD, reactions in CVD, Types of CVD: atmospheric pressure, low	
	pressure, plasma enhanced CVD. Sputtering: Basic principle of sputtering process, brief regarding triode sputtering, ion beam sputtering	
C		
00	sted readings:	
1.	sted readings: Thin Film Phenomenon, K. L. Chopra, Mc Graw Hill, 1969.	
1. 2.	sted readings: Thin Film Phenomenon, K. L. Chopra, Mc Graw Hill, 1969. Hand Book of Thin Film Technology, L. I. Maissel and R. Glang Mc Graw Hill, 1969	
1. 2. 3.	 sted readings: Thin Film Phenomenon, K. L. Chopra, Mc Graw Hill, 1969. Hand Book of Thin Film Technology, L. I. Maissel and R. Glang Mc Graw Hill, 1969 Thin Film Processes. J. L. Vossen and W. Kem, (Academic Press, 1978) 	
1. 2. 3. 4.	sted readings: Thin Film Phenomenon, K. L. Chopra, Mc Graw Hill, 1969. Hand Book of Thin Film Technology, L. I. Maissel and R. Glang Mc Graw Hill, 1969 Thin Film Processes. J. L. Vossen and W. Kem, (Academic Press, 1978) The Material Science of Thin Films, M. Ohring (Academic Press, 1972)	
1. 2. 3.	 sted readings: Thin Film Phenomenon, K. L. Chopra, Mc Graw Hill, 1969. Hand Book of Thin Film Technology, L. I. Maissel and R. Glang Mc Graw Hill, 1969 Thin Film Processes. J. L. Vossen and W. Kem, (Academic Press, 1978) 	

- 7. Nanotechnology: Principles and Practices, Kulkarni, Sulabha K. 3rd ed. 2015, Springer.
- 8. Preparation of Thin Films, Joy George, Marcel Dekker, Inc.
- 9. Handbook of semiconductor electrodeposition, R.K.Pandey, S.N.Sahu, S.Chandra
- **10**. Spin Coating for rectangular substrates, A Thesis written by G. A. Luurtesema, University of California, Berkeley, 1997.

CO No.	СО	Cognitive level
C402.1	Recognize the fundamental processes of material synthesis	1
C402.2	Apply the knowledge of bulk material, thin and thick film in daily practices	3
C402.3	Recommend different materials synthesis techniques for scientific purpose	5

	ES-403: Energy Conversion and management	
	Course Objectives:	
	to make students acquainted with various solar collectors.	
	to enable students to develop insight into components of the system as well as design and installation of such systems.	
	8	
Unit 1	energy conservation and motivation to the workers in industrial sector	12 L
Unit I	Solar flat plate collector	14 L
	Introduction, Design and structures of collectors for heating liquids and air, Energy balance equation, trasmissivity of cover systems, trasmissivity absorptivity product,	
	overall loss coefficient and heat transfer correlations, Liquid flat plate collectors:	
	collector efficiency factor, collector heat removal factor, testing procedure; the	
	evacuated tube collectors	
Unit 2	Solar concentrators	12 L
	Introduction to concentrating collectors: classification and types, Concentration ratio,	
	Acceptance angle, Stationary collectors: Compound parabolic collectors, Sun-tracking	
	collectors: parabolic trough collector, Fresnel collector, parabolic dish reflector,	
	Heliostat field collectors; optical and thermal performance of a concentrating collector	
Unit 3	Energy audit and energy economics	12L
	The energy audit concept, elements of energy audit, process of energy audit and	
	preparation of energy audit report, investment analysis for an energy conservation	
	scheme, generation of funds for energy conservation schemes, interest and	
	depreciation, types of depreciation, economic life, salvage value, payback value	
Unit 4	Employee motivation in organizations and process management	12L
	The Human factor, energy conservation and people, the involvement tree, elements of	
	energy management programme, promoting energy conservation, programme	
	planning, programmeimplementation, steps for process improvement, motors and	
	adjustable speed drives, common energy management opportunities, steps for process	

	improvements, motors and drives, compressors, energy conservation opportunities		
Unit 5	Energy conservation and thermal insulation and lighting	12 L	
	Propagation of heat in material, conduction, convection, radiation losses, properties		
	desirable in insulating materials, various insulators, economical thickness of insulators,		
	selection of insulating materials Components of lighting system, lamp types,		
	luminaires, determining lighting needs, maintaining the lighting systems		
Suggest	Suggested readings:		
1. Guide to Energy Management and Utilization by B. Caphart, W. C. Turner, W. J. Kennedy			
Fairmount Press.			
2. Indu	strial Energy Management and Utilization by L. C. Witte, P. S. Schmidt, D. R. H	Brown	

2. Industrial Energy Management and Utilization by L. C. Witte, P. S. Schmidt, D. R. Brown, Hemisphere Publishing Company.

Course Outcomes (COts):

CO No.	СО	Cognitive level
C403.1	Recognize the concept of solar collectors	1
C403.2	Identify in detail different parts of the system with their required specifications	2
C403.3	Classify different aspects related to the energy audit and energy conservation for scientific purpose	4
C403.4	Discover the economic aspects of the energy	2

	MS-403: Characterization of Materials	
Unit 1	 Course Objectives: to learn various material characterization techniques. to facilitates students with the new insights of characterization techniques. to explores the fundamental principles behind various characterization techniques with their practical applications IR AND UV- Visible spectroscopy Range of IR absorption, requirement for IR radiation absorption, theory of IR absorption spectroscopy, linear molecules, symmetric molecules, asymmetric molecules, Instrumentation, FTIR: principle, application, limitations, Color and light 	12 L
	absorption, the chromospheres concept, theory of electronic spectroscopy-orbital's involved in electronic transitions, laws of light absorption,- Beer's and Lamberts law, Instrumentation, UV-spectrophotometer, sample and reference cells, application of UV-Vis spectroscopy, Band gap determination (Direct, Indirect) for thin films	
Unit 2	Raman spectroscopy Characteristic properties of Raman lines, differences between Raman spectra ad infrared spectra, mechanism of Raman effect, instrumentation, intensity of Raman lines, Application of Raman spectroscopy	10 L
Unit 3	X-ray diffraction Crystalline state, X-ray diffraction process, preliminary discussion, instrumentation and single crystal pattern, and their information content, structure and structure factor determination, particle size determination, crystallography by diffraction of	12 L

	radiations other than X-ray, application of X-ray diffraction measurement and	
	analysis	
Unit 4	Electron microscopy	
	Why uses electrons? Electron lenses? factors limiting the performance of	
	electromagnetic lenses	10 L
	Transmission electron microscopy (TEM): Constituent parts and their functions with attachments, selected area, high resolution, reflection and scanned diffraction,	10 L
	dark field electron microscopy, reflected electron microscopy, X-ray microanalysis quantitative interpretation of crystalline image contrast.	
	Scanning electron microscopy (SEM):	12 L
	History, signal detection, equipment, nature of SEM image, secondary electron emission: the distribution of emitted secondary, selection of secondary in SEM,	
	secondary electron yield, effect of angle, voltage and field contrast, specimen charging effect, factors affecting resolving power of SEM, relation between working distance,	
	final aperture size and beam divergence in SEM.	
	Energy dispersive X-ray spectroscopy (EDS): principle, instrumentation, sample	
Unit 5	analysis, limitations	04 L
Unit 5	Atomic force microscopy	04 L
	Operating principle, Different operating modes: Contact, tapping, non-contact, forces	
C	between the tips and surfaces, limitations of AFM	
00	sted readings: Elements of X-ray diffraction: Cullity, Addision-Wesely Publishing Comp, USA.	
	Encyclopedia of Materials Characterization, (Series): Richard Brundle, Charles A Ev	iona Ir
۷.	Shaun Wilson, Surface, Interfaces,	alls, JI
3.		lhi
	Fundamental of molecular spectroscopy: Banwell, Tata McGraw-Hill Publ. Company L	
	Delhi	
5.	Electron Microscopes: J. A. Swift	
6.	Introduction to Diffraction in Materials Science and Engineering: Aaron D Krawitz, John	Willev
	and Sons Inc	

CO No.	СО	Cognitive level
C403.1	Describe the fundamental processes of advanced material characterization techniques	1
C403.2	Explain various applications of these techniques in pure material science	3
C403.3	Compare various aspect associated to characterization techniques	5

		MS/ES - 404: Special Laboratory - II	
	Course	Objectives:	
		To learn the principles of material testing and characterization and to	
		apply them for various scientific applications.	
	\triangleright	To correlate knowledge of specialized materials science and ene	rgv
		studies practical's with their theory.	07
	\succ	To learn how the energy crises can solve by studding the solar cell	
		experiments.	
		To develop intellectual communication skills and discuss the ba	asic
		principles of scientific concepts in a group.	
	COMN	ION EXPERIMENTS	
	1.	To study the Thermionic emission properties of tungsten wire.	
		To study the atomic energy levels by Franck-Hertz Experiment.	
		Determination of Susceptibility: Quinck's Method.	
		To study the effect of temperature on various electronic properties by Hall	
		effect set-up.	
	5	To study the operation of single-stage and multi-stage RC–Coupled Amplifi	ier
	5. 6.	To study the effect of load resistance & source resistance on operation of an	
	0.	amplifier.	L
		ampinter.	
	EXPE	RIMENTS IN MATERIALS SCIENCE	
	1	Determination of optical band gap using UV Visible spectroscopy.	
		Analysis of X-ray Diffraction pattern for determination of crystal structure.	
	2. 3.		
	3. 4.	To study the optical properties of semiconducting film by Photoluminescend	20
	4.		
		spectroscopy.	
	EXPE	RIMENTS IN ENERGY STUDIES	
	1	To study the efficiency measurement of stand-alone solar PV system.	
	1. 2		
	2.	To study the efficiency of Flat Plate Collector (Forced circulation mode).	
	3.	To carry out the measurement study of available solar energy.	
	4.	To calculate the Figure of merit of solar cooker.	
	(*Only	ten practical's has to be performed by MS and ES students.)	
Suggest	od read	lings	
00		tion to Diffraction in Materials Science and Engineering: Aaron D Krawitz,	John Willow
	and Sons		John whicy
		s of X-ray diffraction: Cullity, Addision-Wesely Publishing Comp, USA.	A Evena L
	• •	bedia of Materials Characterization, (Series): Richard Brundle, Charles	A Evans, Jr
	Shaun Wilson, Surface, Interfaces.		
		ok of Thin Film Technology, L. I. Maissel and R. Glang Mc Graw Hill, 1969)
-		nes (COts):	
	pletion	of this course, the student will be able to:	
CO		CO	Cognitive

No.		level
C404.1	Prepare the specimens with the help of various synthesis techniques	3
	independently.	
C404.2	Classify the different materials based on their characterization techniques.	4
C404.3	Apply various test methods for characterizing physical properties of materials	3
C404.4	Gain sufficient knowledge necessary for construction and designing of various	6
	solar based devices.	

M.Sc. Part II Semester IV Physics: Elective Course

MS/ES - 405: Project	
 e Objectives: to carry out necessary in-depth research/technical work in particular broad scientific area. To compare the status of present research work in national and international level and to conduct thorough discussion of research findings. The overall goal of the project/dissertation is to express the knowledge and capability particularly required for independent work. 	

Course Outcomes (COts):

CO No.	СО	Cognitive level
C405.1	clearly present and discuss the conclusions as well as the knowledge and arguments that form the basis for these findings	2
C405.2	Apply the observed solutions for real time problems associated in society	3
C405.3	adapt the knowledge and skill necessary for scientific report preparation as well as presentation	6

M.Sc. Part II Semester IV (Physics): Audit Courses

	AC-401(A): Human Rights	
	(Professional and Social + Value Added Audit course; Practical; 2 Credits)	
	(Optional: Campus-level)	
	Course Objectives (CObs):	
	 To make students aware about human rights and human values. 	
	- To make students uware about numan rights and numan values.	
Unit 1	Introduction to Human Rights	6 hrs.
	1.1 Concept of Human Rights	
	1.2 Nature and Scope of Human Rights	
	1.3 Fundamental Rights and Fundamental Duties	
	1.4 Interrelation of Rights and Duties	
Unit 2	Human Rights in India	8 hrs.
	2.1 Meaning and Significance of :	
	1) Right to Equality 2) Right to Freedom, 3) Right against Exploitation, 4) Right to	
	Freedom of Religion, 5) Cultural and Educational Rights, and 6) Right to	
	Constitutional Remedies.	
	2.2 Constitutional Provisions for Human Rights	
	2.3 Declaration of Human Rights	
	2.4: National Human Rights Commission	
Unit 3	Human Values	8 hrs.
	3.1: Meaning and Definitions of Values	
	3.2: Importance of values in the life of Individual	
	3.3: Types of Values	
	3.4: Programmes for conservation of Values	
Unit 4	Status of Social and Economically Disadvantaged people and their rights	8 hrs.
	4.1: Rights of women and children in the context of Social status	
	4.2: The Minorities and Human Rights	
	4.3: Status of SC/ST and other Indigenous People in the Indian Scenario	
	4.4: Human rights of economically disadvantaged Society	
	ed readings:	
	nan rights education – YCMOU, Nasik	
	ue education – SCERT, Pune	
3. Hur	nan rights reference handbook – Lucille whare	

Course Outcomes (COts):

CO No.	СО	Cognitive level
AC401A	1 Practice the learned issues under human rights and human values in real life.	3
AC401A	2 Provide social justices to people around them and provide guidance about	5
	human rights to their friends, parents and relatives.	

	(Professio	AC-401(B): Current Affairs onal and Social + Value Added Audit course; Practical; 2 Credits) (Optional: Campus-level)	
	<i>Course Object</i>To make st	<i>ives (CObs):</i> udents updated about current affairs of India and world.	
	Title	Content	Hours
Unit 1	Politics &	• National & International Political Activity, Organization.	08
	Economy	• Economy & Business, Corporate world	
Unit 2	Awards and	• National & International Awards and recognitions	07
	recognitions	• Books and authors	
Unit 3	Science &	Software, Automobile, Space Research	07
	Technology	• New inventions and discoveries	
Unit 4	Environment	• Summit & conference, Ecology & Climate, Organization.	08
	& Sports	• National & International Games, Olympics, commonwealth etc.	
Suggeste	ed readings (Us	se recent years' data and current literature):	
1. Indi	ia 2019, by Pub	lications Division Government of India	
2. Mai	norama Year Bo	ook by Philip Mathew,	
3. Indi	ia 2019, Rajiv N	<i>I</i> aharshi	
		wledge 2018 with Current Affairs Update, Disha Experts	
5. Ger	neral Knowledge	e 2018: Latest Who's Who & Current Affairs by RPH Editorial Board.	

On completion of this course, the student will be able to:

CO No.	СО	Cognitive level
AC401B.1	Identify important issues currently/ recently happening in India or world.	5
AC401B.2	Summarize current affairs regularly.	6

AC-401(C): Review of Research Papers

(Technology + Value added Audit course; Optional: Program-level; Practical; 2 Credits)

Course Objectives (CObs):

- To develop the skill in students to search the scientific articles in the field of Materials Science and Energy studies.
- > To motivate students for the scientific review of research papers in the broad field of Physics.

Review of Research Papers:

- Modes of Literature Survey:
 - Literature search using authentic library resources (print and non-print, digital and virtual) for Almanacs, Encyclopaedia, Dissertations, Theses, Research papers, Review articles, Reference/ Textbooks, and Popular articles (INFLIBNET, Google Scholar, PubMed, Highwire, Google patents, Indian patent database, etc.)
 - Analyzing the literature quality (indexing, peer review, citations, journal impact factor, etc.)
 - Writing the summary of research paper: approach (theoretical, experimental, interpretive,

clinical, etc.), prepare the highlights and drawing important conclusion from literature

- Sections to include and tips for writing them: Abstract, Introduction, Body, Discussion, Conclusion, References
- Reference styles (MLA, APA, etc.), Use of bibliography/ reference/ citation managers and generators (Reference Manager, EndNote, RefWorks, Mendeley, Zotero, Qiqqa, etc.)
- Ethics of publication: Approval and consent, Data ethics (accuracy, falsification, fabrication, and confidentiality), Plagiarism and self-plagiarism, collaborative authorship, conflict of interest, legal consequences
- Content similarity detection, Use of anti-plagiarism services (Urkund, iThenticate, Turnitin, Copyscape, Grammarly, etc.)

Course Outcomes (COts):

CO No.	СО	Cognitive level
AC401C.1	Analyse the scientific content in form research paper.	4
AC401C.2	Establish the scientific information on a topic of interest and further similarity of scientific content (plagiarism) will be checked.	3
AC401C.3	Express his scientific knowledge in the form of presentation/discussion with confidence.	2

	AC-401(D): Fundamentals of Electric Vehicles: Technology and Economics (NPTEL online course)	
	(Optional: Program-level)	
	 Course Objectives (CObs): The course will examine technology associated with each element of EV drive-train The course will get into economics of EVs in India and petrol vehicles. 	
01	Can India Drive its EV Program Innovatively and Differently and Scale?, Can India Drive its EV Program Innovatively and Differently and Scale? (cont.), A Bit about Batteries, Charging and Swapping Infrastructure, Where will We Get Lithium for Batteries?, EV Subsystems	Week 1
02	Forces Acting When a Vehicle Move, Aerodynamic Drag, Rolling Resistance and Uphill Resistance, Power and Torque to Accelerate, Putting it All Together 1, Putting it All Together 2, Concept of Drive Cycle 1	Week 2
03	Concept of Drive Cycle 2, Drive Cycles and Energy Used per Km, Part 1, Drive Cycles and Energy Used per Km, Part 2, EV Subsystem: Design of EV Drive Train, Part 1, EV Subsystem: Design of EV Drive Train, Part 2	Week 3
04	Introduction to Battery Parameters, Part 1, Introduction to Battery Parameters, Part 2, Why Lithium Ion Battery? (Part 1), Why Lithium Ion Battery? (Part 2), Batteries in Future, Li-Ion Battery Cells,	Week 4
05	SoH and SoC Estimation and Self Discharge, Part 1, SoH and SoC Estimation and Self Discharge, Part 2, Battery Pack Development, Part 1, Battery Pack Development, Part 2, Computation of Effective Cost of Battery, Part 1, Computation of Effective Cost of Battery, Part 2, Charging Batteries,	Week 5

06	Fundamentals of Battery Pack Design, Mechanical Design, Part 1, Mechanical Design,	Week
00		6
	Part 2, Mechanical Design, Part 3, Mechanical Design, Part 4, Thermal Design, Part 1,	U
	Thermal Design, Part 2, Thermal Design, Part 3,	
07	Thermal Design, Part 4, Electrical Design, Part 1, Electrical Design, Part 2, Electrical	Week
	Design, Part 3, BMS Design of Electric Vehicle, Part 1, BMS Design of Electric	7
	Vehicle, Part 2, BMS Design of Electric Vehicle, Part 3, EV Motors and Controllers:	
	Understanding Flow, Part 1, EV Motors and Controllers: Understanding Flow, Part 2,	
08	Power and Efficiency, Torque Production, Part 1, Torque Production, Part 2, Torque	Week
	Production, Part 3 Speed and Back EMF, The d-q Equivalent Circuit, Part 1, The d-q	8
	Equivalent Circuit, Part 2, Field-Oriented Control, Three Phase AC, Part 1, Three Phase	
	AC, Part 2, Thermal Design, Part 1, Thermal Design, Part 2 Engineering	
	Considerations, Part 1, Engineering Considerations, Part 2, Future Frontiers, EV	
	Chargers: Introduction, EV Chargers: Slow or Fast, Part 1, EV Chargers: Slow or Fast,	
	Part 2, Battery Swapping, Standardization and On Board Chargers, Public Chargers,	
	Part 1, Public Chargers, Part 2, Bulk Chargers/ Swap Station, Part 1, Bulk Chargers/	
	Swap Station, Part 2, Economics of Public Chargers in Context, Analytics, Part 1,	
	Analytics, Part 2, Course summary	
Suggest	ed readings:	
00		
1.	Fundamentals of Electric Vehicle Technology: A DIY Guide for EV Be	ginners
	(DIYguru) Kindle Edition, DIYguru; 1st edition (2 May 2020) Avinash Singh,	0
	Chimurkar, Anubhav Sen, Nikhil Raj, Ashutosh Kumar.	iayusi
	Chimurkai, Anuonav Sen, Nikim Kaj, Ashulosh Kumar.	

Electric Powertrain – Energy Systems, Power electronics and drives for Hybrid, electric and fuel cell vehicles by John G. Hayes and A. Goodarzi, Wiley Publication.

3. Modern Electric, Hybrid Electric, and Fuel Cell Vehicles, Fundamentals, Theory, and Design, Mehrdad Ehsani, Texas A&M University Yimin Gao, Texas A&M University Sebastien E. Gay, Texas A&M University Ali Emadi, Illinois Institute of Technology, CRC Press.

* The above course is archived, students have to be learned the course from the Videos (available on NPTEL Site) of said lectures in online mode (only) and then evaluation will be done by Faculty of Department of Physics, KBCNMU Jalgaon.

Course Outcomes (COts):

On completion of this course, the student will be able to:

CO No.	СО	Cognitive level
AC401D.	Interpret the technology associated with each element of an EV drive-train	2
AC401D.2	Estimate economics of EVs in comparison with petrol-powered vehicles.	5
